HBase是一个分布式存储、数据库引擎,可以支持千万的QPS、PB级别的存储,这些都已经在生产环境验证,并且在广大的公司已经验证。特别是阿里、小米、京东、滴滴内部都有数千、上万台的HBase集群。选择一个技术的首要条件是对齐大公司,大公司会投入大量的人力去维护、改进、贡献社区。
本文将介绍大数据的知识和Hbase的基本概念,作为大数据体系中重要的一员,Hbase弥补了Hadoop只能离线批处理的不足,支持存储小文件,随机检索。而这种特性使得Hbase对于实时计算体系的事件存储有天然的较好的支持。这使得Hbase在实时流式计算中也扮演者重要的角色。
场景描述:先放结论:Hbase和Hive在大数据架构中处在不同位置,Hbase主要解决实时数据查询问题,Hive主要解决数据处理和计算问题,一般是配合使用。
前段时间总结了一篇关于HBase由于分区过多导致集群宕机的文章,感兴趣的同学可以点击原文《HBase案例 | 20000个分区导致HBase集群宕机事故处理》阅读参考。本文重点参考HBase官网,从分区过多这个角度出发,进一步聊一聊HBase分区过多的影响以及单节点合理分区数量等。
(一)Hbase协处理器的前世今生 Hbase是仿照Google的BigTable设计的,而其协处理器也是仿照BigTable的协处理实现完成的,具体链接可 参考:http://research.google.com/people/jeff/SOCC2010-keynote-slides.pdf (二)什么是Hbase协处理器(Coprocessors )? Hbase的协处理器在Hbase中属于高级的应用功能,它可以让开发者自定义的代码在服务器端执行,来完成特定的一些功能。 (三)为什
摘 要 hbase集群搭建与调优。 前言 本文持续更新中,主要因为我也是在工作中逐渐探索中,所以在工作中遇到的配置调优,都将第一时间更新到本文中,用作以后标准配置。 版本介绍 本文基于当前最稳定兼容版本如下: hadoop-2.7.3 hbase-1.2.5 zookeeper-3.4.10 配置文件介绍 Apache HBase使用与Apache Hadoop相同的配置系统,所有配置文件都位于conf/目录中。该目录需要与集群中的每个节点保持同步。 backup-masters 纯文本文件,用于描述备
时间回到2011年,Hadoop作为新生事物,在阿里巴巴已经玩得风生水起,上千台规模的"云梯"是当时国内名声显赫的计算平台。 这一年,Hadoop的好兄弟HBase由毕玄大师带入淘宝,开启了它的阿里之旅。从最初的淘宝历史交易记录,到去年的支付宝消费记录存储在线历史存储统一;从蚂蚁安全风控的多年存储演进,到HBase、TT、Galaxy的大数据激情迭代;HBase在阿里经历过年轻的苦涩,释放过青春的活力,也付出过成长的代价。几代人的不懈努力下,五年陈的HBase开始表现出更成熟、更完善、更丰富的一面,成为公司内部被广泛使用的存储产品之一。 经过阿里集团内部的锤炼,集团将这个技术红利输送给广大阿里云客户。现已推出云数据库HBase产品,支持海量的PB级的大数据存储,适用于高吞吐的随机读写的场景。
一种操作hadoop的轻量级脚本语言,最初又雅虎公司推出,不过现在正在走下坡路了。当初雅虎自己慢慢退出pig的维护之后将它开源贡献到开源社区由所有爱好者来维护。不过现在还是有些公司在用,不过我认为与其使用pig不如使用hive。:)
其中BusyRegionSplitPolicy是HBase-2.x新增的策略,其他6种在HBase-1.2.x中也可以使用。
之前因为仅仅是把HBase当成一个可横向扩展并且具有持久化能力的KV数据库,所以只用在了指标存储上,参看很早之前的一篇文章基于HBase做Storm 实时计算指标存储。这次将HBase用在了用户行为存储上,因为Rowkey的过滤功能也很不错,可以很方便的把按人或者内容的维度过滤出所有的行为。从某种意义上,HBase的是一个有且仅有一个多字段复合索引的存储引擎。
Hi,大家好!我是祝威廉,本来微博也想叫祝威廉的,可惜被人占了,于是改名叫·祝威廉二世。然后总感觉哪里不对。目前在乐视云数据部门里从事实时计算,数据平台、搜索和推荐等多个方向。曾从事基础框架,搜索研发四年,大数据平台架构、推荐三年多,个人时间现专注于集群自动化部署,服务管理,资源自动化调度等方向。
在分布式系统中,负载均衡是一个非常重要的功能,HBase通过Region的数量实现负载均衡,即通过hbase.master.loadbalancer.class实现自定义负载均衡算法。下面将为大家剖析HBase负载均衡的相关内容以及性能指标。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-j3OUucRa-1627099407310)(20210316_分布式NoSQL列存储数据库Hbase(一).assets/image-20210316180046440.png)]
根据用户特征,重新排序热度榜,之后根据两种推荐算法计算得到的产品相关度评分,为每个热度榜中的产品推荐几个关联的产品
先放结论:Hbase和Hive在大数据架构中处在不同位置,Hbase主要解决实时数据查询问题,Hive主要解决数据处理和计算问题,一般是配合使用。
由于Kylin的本身架构(广播特性)和业务特点通常不适用于单套Kylin集群的节点过多,通常大家采用拆分Kylin集群但是共用底层的Hbase集群和计算集群的方式进行部署。本文主要根据目前咱们的实践经验对于此种场景集群配置进行分享,希望对大家有所帮助。
HBase作为列族数据库最经常被人诟病的特性包括:无法轻易建立“二级索引”,难以执行求和、计数、排序等操作。比如,在旧版本的(<0.92)Hbase中,统计数据表的总行数,需要使用Counter方法,执行一次MapReduce Job才能得到。虽然HBase在数据存储层中集成了MapReduce,能够有效用于数据表的分布式计算。然而在很多情况下,做一些简单的相加或者聚合计算的时候,如果直接将计算过程放置在server端,能够减少通讯开销,从而获得很好的性能提升。于是,HBase在0.92之后引入了协处理器(coprocessors),实现一些激动人心的新特性:能够轻易建立二次索引、复杂过滤器(谓词下推)以及访问控制等。
“ 本文介绍在云端kylin数据迁移的实现方案以及在迁移过程中的遇到哪些问题,并给出了问题解决方案.本次迁移中涉及到的hbase cube表1600+,model数量80+,project 10+”
HBase 是一个基于 Google BigTable 论文设计的高可靠性、高性能、可伸缩的分布式存储系统。 网上关于 HBase 的文章很多,官方文档介绍的也比较详细,本篇文章不介绍 HBase 基本的细节。
介绍: 基于Flink实现的商品实时推荐系统。flink统计商品热度,放入redis缓存,分析日志信息,将画像标签和实时记录放入Hbase。在用户发起推荐请求后,根据用户画像重排序热度榜,并结合协同过滤和标签两个推荐模块为新生成的榜单的每一个产品添加关联产品,最后返回新的用户列表。 1. 系统架构 v2.0 1.1 系统架构 v2.0
本文将帮助您使用基于HBase的Apache Spark Streaming。Spark Streaming是Spark API核心的一个扩展,支持连续的数据流处理。
Fluid 作为基于 Kubernetes 开发的面向云原生存算分离场景下的数据调度和编排加速框架,已于近期完成了 v0.6.0 版本的正式发布。腾讯云容器 TKE 团队一直致力于参与 Fluid 社区建设,在最新版本中贡献了以下两大特性:缓存引擎高可用运行时、新增数据缓存引擎实现 GooseFSRuntime 。
比如,在旧版本的(<0.92)Hbase 中,统计数据表的总行数,需要使用 Counter 方法,执行一次 MapReduce Job 才能得到。虽然 HBase 在数据存储层中集成了 MapReduce,能够有效用于数据表的分布式计算。然而在很多情况下,做一些简单的相加或者聚合计算的时候, 如果直接将计算过程放置在 server 端,能够减少通讯开销,从而获 得很好的性能提升
大数据前几年各种概念争论很多,NoSQL/NewSQL,CAP/BASE概念一堆堆的,现在这股热潮被AI接过去了。大数据真正落地到车联网,分控,各种数据分析等等具体场景。 概念很高大上,搞得久了就会发现,大部分都还是数据仓库的衍伸,所以我们称呼这个为“新数仓”,我准备写一系列相关的文章,有没有同学愿意一起来的?请联系我。前面有一些相关文章,大家可以看看: 新数仓系列:Hbase周边生态梳理(1) 本文简单梳理下其中一个应用比较广的HBASE的国内开发者现状,可能不全,有更多信息或者纠正的,请给我留言。 1
hive与hbase的联系与区别: 共同点: hbase与hive都是架构在hadoop之上的。都是用hadoop作为底层存储 区别: Hive是建立在Hadoop之上为了减少MapReduce jobs编写工作的批处理系统,HBase是为了支持弥补Hadoop对实时操作的缺陷的项目 。 想象你在操作RMDB数据库,如果是全表扫描,就用Hive+Hadoop,如果是索引访问,就用HBase+Hadoop 。 Hive query就是MapReduce jobs可以从5分钟到数小时不止,HBase是非常高效的
Micro-Batch Processing:100ms延迟 ,Continuous Processing:1ms延迟
本文根据网易杭州研究院技术专家范欣欣在中国HBase技术社区第3届 MeetUp 杭州站分享的《网易HBase实践》编辑整理而成。
实时即未来,最近在腾讯云流计算 Oceanus(Flink) 进行实时计算服务分享给大家~
作者:腾讯云流计算 Oceanus 团队 流计算 Oceanus 简介 流计算 Oceanus 是大数据产品生态体系的实时化分析利器,是基于 Apache Flink 构建的具备一站开发、无缝连接、亚秒延时、低廉成本、安全稳定等特点的企业级实时大数据分析平台。流计算 Oceanus 以实现企业数据价值最大化为目标,加速企业实时化数字化的建设进程。 本文将您详细介绍如何提取 MySQL 数据与 HBase 数据进行维表关联(流维 join),经过简单聚合分析后存入 Elasticsearch 中。 前置准
HBase中的一级索引指数据在写入region时,会根据rowkey进行排序后写入,之后regionserver在加载region时,会自动为当前region的rowkey创建一个LSM树的索引,方便对当前region,rowkey的查询。
我们在系统学习大数据的之前,要先了解大数据开发是在什么系统平台下进行的。所以我们在学之前要先学习Linux的知识,这部分显得格外的重要。
谢远东,腾讯高级工程师,云原生机器学习社区 Kubeflow Member、 云原生数据编排与加速框架 Fluid(CNCF Sandbox) 核心开发者、Istio Member ,负责腾讯云 TKE 在 AI 场景的研发和支持工作。 彭芳,腾讯云容器产品经理,负责腾讯云 TKE 在存储、安全和云原生etcd服务的产品策划工作。 前言 Fluid 作为基于 Kubernetes 开发的面向云原生存算分离场景下的数据调度和编排加速框架,已于近期完成了 v0.6.0[1] 版本的正式发布。腾讯云容器 TK
本文讲述如何安装,部署,启停HBase集群,如何通过命令行对Hbase进行基本操作。
梳理了Hbase与Hive之间的区别和关系 1. 区别 Hbase:Hadoop database,也就是基于Hadoop的数据库,是一种NoSQL的数据库,主要用于海量数据的实时随机查询,例如:日志明细,交易清单等。 Hive: Hive是hadoop的数据仓库,跟数据库有点差,主要是通过SQL语句对HDFS上结构化的数据进行计算和处理,适用于离线批量数据处理 通过元数据对HDFS上的数据文件进行描述,也就是通过定义一张表来描述HDFS上的结构化文本,包括各列的数
谢远东,腾讯高级工程师,云原生机器学习社区 Kubeflow Member、 云原生数据编排与加速框架 Fluid(CNCF Sandbox) 核心开发者、Istio Member ,负责腾讯云 TKE 在 AI 场景的研发和支持工作。
为了加深对Hbase的理解,对相关知识点做了笔记,并在组内进行了Hbase相关技术的分享,由于Hbase涵盖的内容比较多,因此计划分享2期,下面就是针对第一期Hbase技术分享整体而成,第一期的主要内容如下:
推荐系统主要解决的是信息过载问题,目标是从海量物品筛选出不同用户各自喜欢的物品,从而为每个用户提供个性化的推荐。推荐系统往往架设在大规模的业务系统之上,不仅面临着用户的不断增长,物品的不断变化,而且有着全面的推荐评价指标和严格的性能要求(Netflix 的请求时间在 250 ms 以内,今日头条的请求时间在 200ms 以内),所以推荐系统很难一次性地快速计算出用户所喜好的物品,再者需要同时满足准确度、多样性等评价指标。
HBase的基础框架,将分成几个章节对HBase进行描述,不当之处还望大家批评指正。下面是了解HBase基础架构的第二部分。
2006年末发起,根据Google的Chang等人发表的论文“Bigtable:A Distributed Storage System for Strctured Data“来设计的。
Apache Hive是一个构建于Hadoop(分布式系统基础架构)顶层的数据仓库,注意这里不是数据库。Hive可以看作是用户编程接口,它本身不存储和计算数据;它依赖于HDFS(Hadoop分布式文件系统)和MapReduce(一种编程模型,映射与化简;用于大数据并行运算)。其对HDFS的操作类似于SQL—名为HQL,它提供了丰富的SQL查询方式来分析存储在HDFS中的数据;HQL经过编译转为MapReduce作业后通过自己的SQL 去查询分析需要的内容;这样一来,即使不熟悉MapReduce 的用户也可以很方便地利用SQL 语言查询、汇总、分析数据。而MapReduce开发人员可以把己写的mapper 和reducer 作为插件来支持Hive 做更复杂的数据分析。
1)、标签数据 标签管理平台中,每个标签开发时,首先需要在管理平台上注册(新建标签:4级标签和5级标签) 业务标签和属性标签 业务标签对应标签模型,每个标签模型就是Spark Application,运行程序可以给用户打上标签:TagName 模型表中存储数据:spark application运行时参数设置核心数据: tagName -> tagRule:标签规则
公众号来源:编程新说 作者:李新杰 ?§团结力量大 原始社会,由若干血缘相近的宗族、氏族结合起来集体生活,这就是部落。最高首领就是酋长,此外还可能会有军事首领,他们一起繁衍生息。 到了原始社会末期
前言 最近在跟进Hbase的相关工作,由于之前对Hbase并不怎么了解,因此系统地学习了下Hbase,为了加深对Hbase的理解,对相关知识点做了笔记,并在组内进行了Hbase相关技术的分享,由于Hb
学习和使用hadoop有一年了,这里主要分享一下对hadoop整体上的理解,分门别类的介绍一下相关组件,最后提供了建议的学习路线,希望对hadoop的初学者有参考作用。
领取专属 10元无门槛券
手把手带您无忧上云