因为伪分布式的hbase的依赖于hdfs,因此我将hbase安装好后,首先启动hadoop的hdfs,然后再启动hbase。关闭顺序反之,先关hbase,再关闭hdfs。
HBase shell是HBase的一套命令行工具,类似传统数据中的sql概念,可以使用shell命令来查询HBase中数据的详细情况。安装完HBase之后,如果配置了HBase的环境变量,只要在shell中执行hbase shell就可以进入命令行界面,HBase的搭建可以参考我的上一篇文章:hbase分布式集群搭建
操作 HBase 所用的 jar 包,使用 Maven 导入,引入依赖 hbase-it,pom.xml 文件依赖部分如下:
HBase 提供了一个非常方便的命令行交互工具 HBase Shell。通过 HBase Shell 可以创建表,也可以增删查数据,同时集群的管理、状态查看等也可以通过 HBase shell 实现。
提示:如果直接drop表,会报错:ERROR: Table student is enabled. Disable it first.
在HBASE中,数据存储在具有行和列的表中。这是看起来关系数据库(RDBMS)一样,但将HBASE表看成是多个维度的Map结构更容易理解。
之前学习 HBase 就有疑惑,HBase 虽然可以存储数亿或数十亿行数据,但是对于数据分析来说,不太友好,只提供了简单的基于 Key 值的快速查询能力,没法进行大量的条件查询。
注意:一次只能为一个表的一行数据的一个列,也就是一个单元格添加一个数据,所以直接用shell命令插入数据效率很低,在实际应用中,一般都是利用编程操作数据。
HBase 数据库默认的客户端程序是 HBase Shell,它是一个封装了 Java 客户端 API 的 JRuby 应用软件。用户可以在 HBase 的 HMaster 主机上通过命令行输入 hbase shell,即可进入 HBase 命令行环境,以命令行的方式与 HBase 进行交互。使用 quit 或 exit 命令可退出 HBase 命令行环境。
我们可以以shell的方式来维护和管理HBase。例如:执行建表语句、执行增删改查操作等等。 4.1 需求 有以下订单数据,我们想要将这样的一些数据保存到HBase中。 订单ID 订单状态 支付金额 支付方式ID 用户ID 操作时间 商品分类 001 已付款 200.5 1 001 2020-5-2 18:08:53 手机; 接下来,我们将使用HBase shell来进行以下操作: 1.创建表 2.添加数据 3.更新数据 4.删除数据 5.查询数据 4.2 创建表 在HBase中,所有的数据也都是保存在表中的。要将订单数据保存到HBase中,首先需要将表创建出来。 4.2.1 启动HBase Shell HBase的shell其实JRuby的IRB(交互式的Ruby),但在其中添加了一些HBase的命令。 启动HBase shell: hbase shell 4.2.2 创建表
HBase的名字的来源于Hadoop database,即hadoop数据库,不同于一般的关系数据库,它是非结构化数据存储的数据库,而且它是基于列的而不是基于行的模式。
我们知道hbase是一个多版本的管理系统,在0.96的版本之前默认每个列是3个version,在hbase 0.96之后每个列是1个version,所谓的version其实就是同一条数据插入不同的时间戳来实现的,在hbase底层的存储是基于时间戳排序的,所以每次我们查到的数据都是最新的版本,除非我们指定了要读取特定的时间范围的数据。 先看下Hbase里面Put和Delete命令的api: Put: Put(byte[] row) Put(byte[] row, long ts) Put(byte[] row
本文的HBase安装是在Hadoop已经安装好的基础上实现的,所以之前要导出JAVA_HOME、HADOOP_HOME( 单机模式不需要,伪分布式模式和分布式模式需要)等环境变量以及配置好SSH互信等。 0 公共配置 导出HBase的环境变量
下载最新稳定版的Hive,资源库http://mirror.esocc.com/apache/hive/
–HBase–HadoopDatabase,是一个高可靠性、高性能、面向列、可伸缩、实时读写的分布式数据库
查询某个资金账户的信息 get 'dmp:hbase_tags','资金账号' 创建表 create 'emp', 'personal data', 'professional data' 在HBas
HBase 主要用ZooKeeper来实现 HA 选举与主备集群主节点的切换、系统容错、meta-region 管理、Region 状态管理和分布式 SplitWAL 任务管理等。
HBase是Hadoop Database的简称,是建立在Hadoop文件系统之上的分布式面向列的数据库,为横向发展类型数据库,提供快速随机访问海量结构化数据,它是Hadoop生态系统,提供对数据的随机实时读/写访问,是Hadoop文件系统的一部分,利用了Hadoop的文件系统(HDFS)提供的容错能力。
点击下载 链接:https://pan.baidu.com/s/17r-mfTTYwrgLFh50xDVEvA 提取码:h25r
离线数据分析平台实战——090HBase shell客户端和Java Api介绍 HBase 命令介绍 HBase命令主要分为两大类, 第一类是指操作hbase表的相关的shell命令; 第二类是
1.文档编写目的 在遇到将Hive中的数据同步到HBase时,一般都是通过在Hive中创建映射HBase的表,然后通过insert的方式来实现,在数据量小的时候,往往还能接受,但是如果是大批量数据,除了同步时间较长,往往还会对线上的HBase服务造成影响,因为这种方式底层还是调用的HBase的put API来实现的。为了提高HBase的数据写入,一般都会考虑使用bulkload的方式,而bulkload其实也有很多种选择: 1.编写MapReduce/Spark程序生成hfile文件,然后通过HBase命令
在使用 HBase 时,如果你的数据量达到了数十亿行或数百万列,此时能否在查询中返回大量数据将受制于网络的带宽,即便网络状况允许,但是客户端的计算处理也未必能够满足要求。在这种情况下,协处理器(Coprocessors)应运而生。它允许你将业务计算代码放入在 RegionServer 的协处理器中,将处理好的数据再返回给客户端,这可以极大地降低需要传输的数据量,从而获得性能上的提升。同时协处理器也允许用户扩展实现 HBase 目前所不具备的功能,如权限校验、二级索引、完整性约束等。
下面我们看看HBase Shell的一些基本操作命令,我列出了几个常用的HBase Shell命令,如下: 名称 命令表达式 创建表 create '表名称', '列名称1','列名称2','列名称N' 添加记录 put '表名称', '行名称', '列名称:', '值' 查看记录 get '表名称', '行名称' 查看表中的记录总数 count '表名称' 删除记录 delete '表名' ,'行
本节在 Windows Docker 安装配置 HBase 接 Windows Docker 安装部署 Hadoop 0. 实验环境 Docker Desktop for Windows Hadoop 2.7.3 HBase 1.1.2 hbase-1.1.2-bin.tar.gz 1. 配置环境 1.1 启动 master 容器 docker start -i master 1.2 将 HBase 复制到 容器内 /home 宿主机: F:-1.1.2-bin.tar.gz Docker 容器:/hom
安装 HBase 这里简单搭建了一个单机的 HBase 环境: 安装 JDK 环境,如何安装jdk可以自己网上搜。 下载 HBase,https://hbase.apache.org/downloads.html,这里我们选择下载2.0.1版本,文件名为 hbase-2.0.1.tar.gz,解压到任意目录。 修改 conf/hbase-env.sh ,设置 JAVA_HOME,这个是 /bin/java 所在的目录,通过 which java 查看。 export JAVA_HOME=/java/jdk
本文介绍了如何在Docker环境下极速体验HBase。通过运行CentOS 7虚拟机,并安装和配置HBase,然后使用Docker启动并运行HBase集群。最后,使用HBase Shell命令以及Java API进行HBase的增删改查操作。
(1)使用HBase的API中的Put是最直接的方法,但是它并非都是最高效的方式(2)Bulk load是通过一个MapReduce Job来实现的,通过Job直接生成一个HBase的内部HFile格式文件来形成一个特殊的HBase数据表,然后直接将数据文件加载到运行的集群中。使用bulk load功能最简单的方式就是使用importtsv 工具。importtsv 是从TSV文件直接加载内容至HBase的一个内置工具。它通过运行一个MapReduce Job,将数据从TSV文件中直接写入HBase的表或者写入一个HBase的自有格式数据文件。(3)可以使用MapReduce向HBase导入数据,但海量的数据集会使得MapReduce Job也变得很繁重。推荐使用sqoop,它的底层实现是mapreduce,数据并行导入的,这样无须自己开发代码,过滤条件通过query参数可以实现。
通过HBase的相关JavaAPI,我们可以实现伴随HBase操作的MapReduce过程,比如使用MapReduce将数据从本地文件系统导入到HBase的表中,比如我们从HBase中读取一些原始数据后使用MapReduce做数据分析。
伪分布模式安装即在一台计算机上部署HBase的各个角色,HMaster、HRegionServer以及ZooKeeper都在一台计算机上来模拟。
Hbase(二):Hbase常用操作 常用shell命令 hbase shell命令 描述 alter 修改列族(column family)模式 count 统计表中行的数量 create 创建表 describe 显示表相关的详细信息 delete 删除指定对象的值(可以为表,行,列对应的值,另外也可以指定时间戳的值) deleteall 删除指定行的所有元素值 disable 使表无效 drop 删除表 enable 使表有效 exists 测试表是否存在 exit 退出hbase shell get
因为缴费明细的数据记录非常庞大,该公司的信息部门决定使用HBase来存储这些数据。并且,他们希望能够通过Java程序来访问这些数据。
HBase是一种Hadoop数据库,经常被描述为一种稀疏的,分布式的,持久化的,多维有序映射,它基于行键、列键和时间戳建立索引,是一个可以随机访问的存储和检索数据的平台。HBase不限制存储的数据的种类,允许动态的、灵活的数据模型,不用SQL语言,也不强调数据之间的关系。HBase被设计成在一个服务器集群上运行,可以相应地横向扩展。
主要是常用的hbase shell命令,包括表的创建与删除,表数据的增删查【hbase没有修改】;以及hbase的导出与导入。
为了避免第三方非法访问我们的重要数据,我们可以给HBase配置加密算法,目前HBase只支持使用aes加密算法,用于保护静态的HFile和WAL数据。
1. 官方HBase-MapReduce 1.查看HBase的MapReduce任务的执行 [bigdata@hadoop002 hbase]$ bin/hbase mapredcp 上图标记处为
HBase官方提供了基于Mapreduce的批量数据导入工具:Bulk load和ImportTsv。关于Bulk load大家可以看下我另一篇博文。
温馨提示:要看高清无码套图,请使用手机打开并单击图片放大查看。 Fayson的github: https://github.com/fayson/cdhproject 提示:代码块部分可以左右滑动查看噢 1.文档编写目的 ---- 在前面的文章Fayson介绍过《如何使用Spark Streaming读取HBase的数据并写入到HDFS》,关于SparkStreaming的应用场景很多,本篇文章Fayson主要介绍使用Scala语言开发一个SparkStreaming应用读取Kafka数据并写入HBase。
原文链接:https://foochane.cn/article/2019062801.html
HBase是建立在Hadoop文件系统之上的分布式面向列的数据库,它是横向扩展的。它利用了Hadoop的文件系统(HDFS)提供的容错能力。 HBase提供对数据的随机实时读/写访问,可以直接HBase存储HDFS数据。 准备 安装JDK1.8+ 下载 hbase-2.0.0-beta-1-bin.tar.gz 包,并解压到 /apps/目录下。 修改 conf/hbase-env.sh 文件,设置 JAVA_HOME 变量 export JAVA_HOME=/opt/jdk1.8.0_112 单机模式 单
接下来我们一块儿看一下HBase的几个概念,首先来看第一个概念:Row Key,如下图所示,Row Key顾名思义,就是把一行当做主键,由于HBase建立了索引,所以我们根据行号可以迅速定位的那一行,我们还可以通过Row Key的range来定位数据,也就是查询的时候一次查多行的数据,指定一个范围,同样可以根据索引快速为我们查询出我们想要的结果。当然,也可以通过全表扫描的方式来查询我们想要的数据,这种方式相对来说就慢了。
我们可以以shell的方式来维护和管理HBase。例如:执行建表语句、执行增删改查操作等等
1.文档编写目的 本篇文章主要介绍如何在Hive中集成HBase,将HBase表映射成Hive表,实现在beeline中查询或者修改HBase的表数据。 测试环境 1.集群是Cloudera Enterprise 7.3.1和Cloudera Runtime 7.1.6 2.系统均为RedHat 7.6 3.集群已启用 Kerberos 4.OpenLADP 2.4.44-23.el7_9 2.配置HBase与Hive集成 1.登录CM,下载HBase的配置文件,解压后打开hbase-site.xml 2
standalone模式下hbase的主目录配置为本地的目录‘file://' 使用./start-hbase.sh启动hbase可以在jps看到一个HMaster,一个HReginServer,以及Zookeeper的线程。
之前我们介绍了HBASE的存储机制,HBASE存储数据其底层使用的是HDFS来作为存储介质,HBASE的每一张表对应的HDFS目录上的一个文件夹,文件夹名是以HBASE表的名字来命名(如果没有使用命名空间,那么默认是在default目录下)。在表文件夹下存放着若干个region命名的文件夹,而region文件夹中的每个列族也是用文件夹进行存储的,每个列族中存储的就是实际的数据,以HFile的形式存在。
Hbase的客户端有原生java客户端,Hbase Shell,Thrift,Rest,Mapreduce,WebUI等等。
HBase在大数据生态中的地位举足轻重,它是谷歌bigtable的开源实现,是一种分布式存储的NoSQL数据库,能自动分片和故障转移,与HDFS高度集成,适合海量数据的高效查询。我目前用过的业务场景包括:
上周六,接了一个紧急任务,说实现使用 C++ 访问 HBase 进行操作。说是用 thrift 来实现。对于 C++ 来说,我真的是门外汉,但需求如此,皱着眉头也要把它实现。好歹在同事的帮助下,也是实现了 demo 示例,现在就把这两天的成果分享给大家。
HBase简介及搭建 一、概述 HBase是基于hadoop的数据库工具。 1、特点 HBase来源于google的一篇论文BigTable,后来由Apache做了开源实现就是HBase。是一种NoSQL、非关系型的数据库、不符合关系型数据库的范式。 适合存储半结构化、非结构化的数据;适合存储稀疏的数据,稀疏的数据中空的数据不占用空间。 面向列(族)进行存储,提供实时增删改查的能力,是一种真正的数据库。 可以存储海量数据、性能也很强大,可以实现上亿条记录的毫秒级别的
大家好,我是架构君,一个会写代码吟诗的架构师。今天说一说hbase查看表结构_HBase语法「建议收藏」,希望能够帮助大家进步!!!
领取专属 10元无门槛券
手把手带您无忧上云