大数据技术火热而且火爆,学习大数据的课程和资料也泛滥如潮,而大数据研发环境又不是随便就可以搭建起来的,如何有一个自己随时可用的大数据修炼道场呢?
今天咱来聊一聊 Ambari 如何集成 Apache Hadoop 哈,自从 cloudera 公司将 hortonworks 公司收购后,hdp 就不迭代更新了,这对 Apache Ambari 也产生了很大影响,毕竟 Ambari 与 hdp 耦合性很强。
好多人问我,这种「基于大数据平台的xxxx」的毕业设计要怎么做。这个可以参考之前写得关于我大数据毕业设计的文章大数据方向毕业设计,选题和实现思路。这篇文章是将对之前的毕设进行优化。
腾讯大数据处理套件(Tencent Big Data Suite,TBDS)是一个可靠、安全、易用的大数据处理平台。TBDS 提供了多种高性能分析引擎方便您应对实时流数据处理、离线批数据分析、实时多维分析等场景的海量数据分析挑战。
【大数据入门:手把手教你搭建Hadoop】Ambari2.7.4+HDP3.1.4+CentOS7离线搭建详细图文教程(上)
Hadoop做数仓,不是啥子新鲜概念,各家Hadoop厂商都有自己的方案。Hortonworks这两天突然官方宣布与Jethro一起来玩EDW,Fayson也没搞太懂。从Jethro的文档看上去应该很早就支持CDH5.9/5.10和HDP2.3/2.4了。参考:
Hadoop是一个能够对大量数据进行分布式处理的软件框架。 Hadoop 以一种可靠、高效、可伸缩的方式进行数据处理。Hadoop的发行版除了有Apache hadoop外cloudera,hortonworks,mapR,华为,DKhadoop等都提供了自己的商业版本。商业发行版主要是提供了更为专业的技术支持,这对于大型企业更为重要,不同发行版都有自己的一些特点,本文就各发行版做简单对比介绍。
从右侧最后一条新闻看,Spark也用于AI人工智能 spark是一个实现快速通用的集群计算平台。它是由加州大学伯克利分校AMP实验室 开发的通用内存并行计算框架,用来构建大型的、低延迟的数据分析应用程序。它扩展了广泛使用的MapReduce计算 模型。高效的支撑更多计算模式,包括交互式查询和流处理。spark的一个主要特点是能够在内存中进行计算,及时依赖磁盘进行复杂的运算,Spark依然比MapReduce更加高效。
未来十年,企业数据管理模式将如何进化?Cloudera 的答案是 — 企业数据云。 在数据爆炸时代“掘金” 数字正在“吞噬”世界。 过去的十几年里,我们进入了一个数据爆炸、信息过载的时代。 数据规模在以惊人的速度增长。 2006 年,个人用户才刚刚迈入 TB 时代,当年全球共产生了约 180EB(1 EB = 1024 TB)的数据;2012 年,这个数字增长到了 3.7 ZB(1ZB=10 亿 TB)。 据国际权威机构 Statista 统计和预测,2020 年全球数据产生量预计达到 47ZB。而到 20
如果Greenplum是单节点的安装或者想单台机器运行pxf,可以把cluster命令是pxf init/pxf start/pxf stop等
目前市场上常见的企业级大数据平台型的产品主流的有两个,一个是Cloudera公司推出的CDH,一个是Hortonworks公司推出的一套HDP,其中HDP是以开源的Ambari作为一个管理监控工具,CDH对应的是Cloudera Manager,国内也有像星环这种公司专门做大数据平台。我们公司最初是使用CDH的环境,近日领导找到我让我基于Ambari做一个公司自己的数据平台产品。最初接到这个任务我是拒绝的,因为已经有了很完善很成熟的数据平台产品,小公司做这个东西在我看来是浪费人力物力且起步太晚。后来想想如果公司如果有自己数据平台的产品后续在客户面前也能证明自己的技术实力且我个人也能从源码级别更深入的学习了解大数据生态圈的各个组件。
1. HADOOP背景介绍 1.1 什么是HADOOP 1). HADOOP是apache旗下的一套开源软件平台 2). HADOOP提供的功能:利用服务器集群,根据用户的自定义业务逻辑,对海量数据进行分布式处理 3). HADOOP的核心组件有 A. HDFS(分布式文件系统) B. YARN(运算资源调度系统) C. MAPREDUCE(分布式运算编程框架) 4). 广义上来说,HADOOP通常是指一个更广泛的概念——HADOOP生态圈 1.2 HADOOP产生背景 1). HADOOP最早起源于Nu
今天继续和大家聊一下,kafka的各种发行版。kafka历经数年的发展,从最初纯粹的消息引擎,到近几年开始在流处理平台生态圈发力,衍生出了各种不同特性的版本。
随着大数据行业的发展,大数据生态圈中相关的技术也在一直迭代进步,作者有幸亲身经历了国内大数据行业从零到一的发展历程,通过本文希望能够帮助大家快速构建大数据生态圈完整知识体系。
Kafka不是一个单纯的消息引擎系统,而是能够实现精确一次(Exactly-once)处理语义的实时流处理平台
我的环境已经安装了Ambari-2.7.4.0+HDP-3.1.4.0大数据平台,已安装的组件的版本如下:
针对近期搭建HDP3.1.4版本大数据集群,相较之前研究的HDP2.6.3版本,版本跨度大,为更好的了解掌握新版本的新特性,于是对两个版本及区间版本的技术演进做下梳理。
本章我们开始正式搭建大数据环境,目标是构建一个稳定的可以运维监控的大数据环境。我们将采用Ambari搭建底层的Hadoop环境,使用原生的方式搭建Flink,Druid,Superset等实时计算环境。使用大数据构建工具与原生安装相结合的方式,共同完成大数据环境的安装。
上篇分享HDP3.1.4对照2.6.x的新特性,本篇文字整体分享下HDP3.1.4+Ambari2.7.4集群部署。各位看官走着~
随着大数据行业的发展,大数据生态圈中相关的技术也在一直迭代进步,作者有幸亲身经历了国内大数据行业从零到一的发展历程,通过本文希望能够帮助大家快速构建大数据生态圈完整知识体系。 目前大数据生态圈中的核心技术总结下来如图1所示,分为以下9类,下面分别介绍。 1 数据采集技术框架 数据采集也被称为数据同步。 随着互联网、移动互联网、物联网等技术的兴起,产生了海量数据。这些数据散落在各个地方,我们需要将这些数据融合到一起,然后从这些海量数据中计算出一些有价值的内容。此时第一步需要做的是把数据采集过来。数据采集是大
距离唯一一次搭建Hadoop集群,已是六年有余。那时候大数据的学习资料还是我从某宝25买来的,如今大数据已遍地开花。最近想写一些关于大数据的东西,例如Spark、flink等,想放在Yarn上跑,所以就从Hadoop的搭建开始写起。
👆点击“博文视点Broadview”,获取更多书讯 随着大数据行业的发展,大数据生态圈中相关的技术也在一直迭代进步,作者有幸亲身经历了国内大数据行业从零到一的发展历程,通过本文希望能够帮助大家快速构建大数据生态圈完整知识体系。 目前大数据生态圈中的核心技术总结下来如图1所示,分为以下9类,下面分别介绍。 图1 1 数据采集技术框架 数据采集也被称为数据同步。 随着互联网、移动互联网、物联网等技术的兴起,产生了海量数据。这些数据散落在各个地方,我们需要将这些数据融合到一起,然后从这些海量数据中计算出一些
Apache Ambari是一个基于Web的支持Apache Hadoop集群的供应、管理和监控的开源工具, Ambari已支持大多数Hadoop组件,包括HDFS、MapReduce、Hive、Pig、 Hbase、Zookeeper、Sqoop和Hcatalog等。提供Web UI进行可视化的集群管理,简化了大数据平台的安装、使用难度。
主题模型(topic model)是以非监督学习的方式对文集的隐含语义结构(latent semantic structure)进行聚类(clustering)的统计模型。
在当今大数据时代,处理海量数据成为了一项关键任务。Hadoop作为一种开源的分布式计算框架,为大规模数据处理和存储提供了强大的解决方案。本文将介绍Hadoop的组成和其在大数据处理中的重要作用,让我们一同踏上学习Hadoop的旅程。
大数据平台的开发环境搭建,我们前面已经说过了,需要搭建Hdfs,Yarn,Spark,HBase,Hive,ZK等等,在开发环境下搭建是用于开发测试的,全部部署在VM 虚拟机里面,小数据量小运算量还可以,数据量运算量一旦上来,虚拟机是玩不转的,这就牵涉到生产环境的Hadoop的生态搭建,难道也需要我们一步一步来搭建吗? 几台还可以,那么上百台呢? 难道也需要一台台搭建吗? 显然不可以,有没有什么好的Hadoop生态的搭建工具呢? 国外有俩家企业做了这些事,hortonworks公司推出的Ambari+HDP套件 和 Cloudrea公司推出的 CM+CDH 套件,不过这俩家公司 18年底合并了,不过这并不影响我们的使用。 2. CM+CDH介绍 CM是Cloudrea Manager的简称,是Cloudrea 提供的生产环境的Hadoop 生态部署工具,工具套件为CM+CDH,CM负责监控动态管理及部署Hadoop生态服务,CDH里面包含了绝大多数的Hadoop生态中的服务,包含Hdfs,Yarn,ZK,Hive,Hbase,Flume,Sqoop,Spark等。整体上与前面说所得Ambari + HDP类似。 CM+CDH有免费版和收费版,收费版当然功能更加强悍,比如支持回滚,滚动升级,支持Kerberos,SAML/LDAP支持,SNMP支持,自动化备份和灾难恢复,不过在我们看来,免费版已经够我们使用了。 这里简单和Ambari + HDP对已一下,CDH在部署Hadoop生态上,整体与HDP类似,通过WEB端动态部署Hadoop生态, Name Web Server Tools hortonworks Ambari HDP HDP-Util Cloudrea CM CDH CDH-Util CM+CDH套件组成 CM:WEB应用程序,后台为Ambari Server,负责与HDP部署的集群工作节点进行通讯,集群控制节点包括Hdfs,Spark,Zk,Hive,Hbase等等。 CDH:HDP包中包含了很多常用的工具,比如Hadoop,Hive,Hbase,Spark等 CDH-Util:包含了公共包,比如ZK等一些公共组件。 3. CM+CDH 部署
以下,都是收集于网友、群友安装 ambari 或部署 hdp 集群时出现的问题,挤时间写了个疑难问题解答汇总,希望能够快速帮小伙伴们定位解决问题。觉得文章靠谱的小伙伴,希望能转发、点赞、在看三连走一波~
四年多前,入职一家大厂大数据部门主要工作就是从ambari集成大数据组件服务开始做起,当时需要把机器学习平台集成到大数据平台,当时把ambari进行了大量的修改,形成了一套完整的私有化平台,不仅是换了一层皮肤,而且把企业当中自研的组件和服务也集成进来,还在上面加入了用户登陆体系、安全认证体系、监控告警体系、license管理、自动增机器,在我看来应该是ambari最深入使用的一波人了。
自从大数据的概念被提出后,出现了很多相关技术,其中对大数据发展最有影响力的就是开源分布式计算平台Hadoop,它就像软件发展史上的Window、Linux、Java一样,它的出现给接下来的大数据技术发展带来了巨大的影响。很多知名公司都加入Hadoop相关项目的开发中,如Facebook、Yahoo等,围绕大数据Hadoop技术产生了一系列大数据的相关技术
CDP 私有云基础是Cloudera的本地(裸机)产品、企业数据中心(Enterprise Data Hub)和 HDP 企业的演变。CDP Private Cloud Base 7.1 包括 Cloudera Runtime 7.1,它将 CDH 和 HDP 的优点结合到一个发行版中。CDP私有云基础为客户提供以下服务:
首次听到hadoop这次单词,相信很多人跟我当时是一样,不免心中画上一个大大的问号——这是什么东西?Hadoop是什么?百度百科的解释是:Hadoop是一个由Apache基金会所开发的分布式系统基础架构。换句话说就是hadoop是一个能够对大量数据进行分布式处理的软件框架。
源码下载地址:https://mirrors.tuna.tsinghua.edu.cn/apache/incubator/dolphinscheduler/ 我这里选择1.3.3版本的apache-dolphinscheduler-incubating-1.3.3-src.zip
大搜车已经搭建起比较完整的汽车产业互联网协同生态。在这一生态中,不仅涵盖了大搜车已经数字化的全国 90% 中大型二手车商、9000+ 家 4S 店和 70000+ 家新车二网,还包括大搜车旗下车易拍、车行168、运车管家、布雷克索等具备较强产业链服务能力的公司, 与大搜车在新零售解决方案上达成深度战略合作的长城汽车、长安汽车、英菲尼迪等主机厂商,以及与中石油昆仑好客等产业链上下游的合作伙伴。基于这样的生态布局,大搜车数字化了汽车流通链条上的每个环节,进而为整个行业赋能。
Docker很热,怎么形容?感觉开源除了spark技术,就是docker了,甚至把Go语言也带火了,把Go在TIOBE的排名从百名外带入主流语言的行列。 Docker快成救世主了,这么牛逼的技术,docker和hadoop碰撞出什么火花来呢,是不是得赶紧用上呢? 就不介绍具体什么是docker了,不是一门全新的技术,是基于LXC的高级容器引擎,从linux内核发展出来的轻量隔离技术。相比单纯的隔离,核心是标准化了镜像打包,部署和发布这个过程,相当于标准化了开发过程。就运行态来说,相比VM,核心优势就是轻量,
公司在腾讯云有一个大数据集群,用hdp的ambari部署管理的,hdp面有hadoop、hive、spark等常用的大数据组件,公司的报表都从这里生成。
Cloudera数据平台(CDP)数据中心版(CDP-DC)是Cloudera数据平台的本地版本。CDP-DC结合了Cloudera Enterprise Data Hub和Hortonworks Data Platform Enterprise的最佳服务和组件,以及在堆栈中的增加了新功能和增强功能,提供一流的本地企业数据平台。此统一分发是可扩展和可定制的平台,您可以在其中安全地运行多种类型的工作负载。
Cloudera数据平台(CDP)是Cloudera的最新大数据产品。Apache HBase和Phoenix作为CDP平台的一部分。这两个组件以3种形态提供:
Spark是一种快速、通用、可扩展的大数据分析引擎,包含SparkSQL、Spark Streaming、GraphX、MLlib等子项目。
Cloudera与Dell / EMC保持了长期而成功的合作伙伴关系,为混合云中运行的分析工作负载开发共享存储解决方案。
在hdp的官网上有一个ETL工具叫做Talend Open Studio,然后我就下了,并且在群里询问了一下,突然间冒出来一群ETL高手,经高人指点认识了一款叫做Kettle的软件,经过这两天的试用,从直观感受上,Kettle更容易使用和上手,资料更多,界面更友好。。。 优点很多,这里不一一列举了,关键是它对hadoop的支持我觉得是很全面的。 但是这里面有一个问题出现了,它不支持我现在用的版本,我用的是Hortonworks的HDP1.3,好吧,经过不懈的努力,终于被我搜索到了,哈哈,原来它可以支
git clone https://github.com/hepyu/docker-ambari-2.7.git
我这里创建了一个普通用户名为admin,并且具有sudo权限,4个节点都需要有这个用户。
1) Lucene 框架是 Doug Cutting 开创的开源软件,用 Java 书写代码,实现与 Google 类似的全文搜索功能,它提供了全文检索引擎的架构,包括完整的查询引擎和索引引擎。
Apache Hadoop版本分为两代: 第一代 Hadoop称为 Hadoop 1.0 第二代 Hadoop称为Hadoop 2.0
领取专属 10元无门槛券
手把手带您无忧上云