首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    一篇文章彻底明白Hive数据存储的各种模式

    Hive是基于Hadoop分布式文件系统的,它的数据存储在Hadoop分布式文件系统中。Hive本身是没有专门的数据存储格式,也没有为数据建立索引,只需要在创建表的时候告诉Hive数据中的列分隔符和行分隔符,Hive就可以解析数据。所以往Hive表里面导入数据只是简单的将数据移动到表所在的目录中   Hive的数据分为表数据和元数据,表数据是Hive中表格(table)具有的数据;而元数据是用来存储表的名字,表的列和分区及其属性,表的属性(是否为外部表等),表的数据所在目录等。下面分别来介绍。 一、Hive的数据存储   在让你真正明白什么是hive 博文中我们提到Hive是基于Hadoop分布式文件系统的,它的数据存储在Hadoop分布式文件系统中。Hive本身是没有专门的数据存储格式,也没有为数据建立索引,只需要在创建表的时候告诉Hive数据中的列分隔符和行分隔符,Hive就可以解析数据。所以往Hive表里面导入数据只是简单的将数据移动到表所在的目录中(如果数据是在HDFS上;但如果数据是在本地文件系统中,那么是将数据复制到表所在的目录中)。   Hive中主要包含以下几种数据模型:Table(表),External Table(外部表),Partition(分区),Bucket(桶)(本博客会专门写几篇博文来介绍分区和桶)。   1、表:Hive中的表和关系型数据库中的表在概念上很类似,每个表在HDFS中都有相应的目录用来存储表的数据,这个目录可以通过${HIVE_HOME}/conf/hive-site.xml配置文件中的 hive.metastore.warehouse.dir属性来配置,这个属性默认的值是/user/hive/warehouse(这个目录在 HDFS上),我们可以根据实际的情况来修改这个配置。如果我有一个表wyp,那么在HDFS中会创建/user/hive/warehouse/wyp 目录(这里假定hive.metastore.warehouse.dir配置为/user/hive/warehouse);wyp表所有的数据都存放在这个目录中。这个例外是外部表。   2、外部表:Hive中的外部表和表很类似,但是其数据不是放在自己表所属的目录中,而是存放到别处,这样的好处是如果你要删除这个外部表,该外部表所指向的数据是不会被删除的,它只会删除外部表对应的元数据;而如果你要删除表,该表对应的所有数据包括元数据都会被删除。   3、分区:在Hive中,表的每一个分区对应表下的相应目录,所有分区的数据都是存储在对应的目录中。比如wyp 表有dt和city两个分区,则对应dt=20131218,city=BJ对应表的目录为/user/hive/warehouse /dt=20131218/city=BJ,所有属于这个分区的数据都存放在这个目录中。   4、桶:对指定的列计算其hash,根据hash值切分数据,目的是为了并行,每一个桶对应一个文件(注意和分区的区别)。比如将wyp表id列分散至16个桶中,首先对id列的值计算hash,对应hash值为0和16的数据存储的HDFS目录为:/user /hive/warehouse/wyp/part-00000;而hash值为2的数据存储的HDFS 目录为:/user/hive/warehouse/wyp/part-00002。   来看下Hive数据抽象结构图

    04

    Hive 整体介绍

    Hive可以管理HDFS中的数据,可以通过SQL语句可以实现与MapReduce类似的同能,因为Hive底层的实现就是通过调度MapReduce来实现的,只是进行了包装,对用户不可见。         Hive对HDFS的支持只是在HDFS中创建了几层目录,正真的数据存在在MySql中,MYSQL中保存了Hive的表定义,用户不必关系MySQL中的定义,该层对用户不可见。Hive中的库在HDFS中对应一层目录,表在HDFS中亦对应一层目录,如果在对应的表目录下放置与表定义相匹配的数据,即可通过Hive实现对数据的可视化及查询等功能         综上所述,Hive实现了对HDFS的管理,通过MySQL实现了对HDFS数据的维度管理         Hive基本功能及概念             database             table             外部表,内部表,分区表         Hive安装             1. MySql的安装(密码修改,远程用户登陆权限修改)             2. Hive安装获取,修改配置文件(HADOOP_HOME的修改,MySQL的修改)             3. 启动HDFS和YARN(MapReduce),启动Hive         Hive基本语法:             1. 创建库:create database dbname             2. 创建表:create table tbname                 Hive操作:             1. Hive 命令行交互式             2. 运行HiveServer2服务,客户端 beeline 访问交互式运行             3. Beeline 脚本化运行                 3.1 直接在 命令行模式下 输入脚本命令执行(比较繁琐,容易出错,不好归档)                 3.2 单独保存SQL 命令到 文件,如etl.sql ,然后通过Beeline命令执行脚本         数据导入:             1. 本地数据导入到 Hive表 load data local inpath "" into table ..             2. HDFS导入数据到 Hive表 load data inpath "" into table ..             3. 直接在Hive表目录创建数据         Hive表类型:             1. 内部表: create table 表数据在表目录下,对表的删除会导致表目录下的数据丢失,需要定义表数据的分隔符。             2. 外部表: create external table 表目录下挂载表数据,表数据存储在其他HDFS目录上,需要定义表数据的分隔符。             3. 分区表:与创建内部表相同,需要定义分区字段及表数据的分隔符。在导入数据时需要分区字段,然后会在表目录下会按照分区字段自动生成分区表,同样也是按照目录来管理,每个分区都是单独目录,目录下挂载数据文件。             4. CTAS建表         HQL             1. 单行操作:array,contain等             2. 聚合操作:(max,count,sum)等             3. 内连接,外连接(左外,右外,全外)             4. 分组聚合 groupby             5. 查询 : 基本查询,条件查询,关联查询             6. 子查询:                 当前数据源来源于 另个数据执行的结果,即当前 table 为临时数据结果             7. 内置函数: 转换, 字符串, 函数                 转换:字符与整形,字符与时间,                 字符串:切割,合并,                 函数:contain,max/min,sum,             8. 复合类型                 map(key,value)指定字符分隔符与KV分隔符                 array(value)指定字符分隔符                 struct(name,value) 指定字符分割与nv分隔符             9. 窗口分析函数             10. Hive对Json的支持

    01
    领券