首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    从EEG中解码想象的3D手臂运动轨迹以控制两个虚拟手臂

    使用从EEG解码的信息来实现对人工或虚拟手臂的在线控制通常是通过对不同的激活状态进行分类或与对象的不同显性动作相关的感觉运动活动的自愿调节来实现的。然而,一些研究报道了使用更自然的控制方案,例如解码想象的3D手臂运动的轨迹来移动假肢,机器人或虚拟手臂,所有方法都使用离线前馈控制方案。在该项研究中,研究人员首次尝试实现在线控制两个虚拟手臂,从而在3D空间中朝三个目标/手臂移动。使用多重线性回归,从mu,low beta, high beta, 和lowgamma EEG振荡的功率谱密度解码出想象的手臂运动的3D轨迹。研究人员在数据集上进行了实验分析,该数据集记录了三个受试者在七个会话,其中每个会话包括三个实验块:一个离线校准块和两个在线反馈块。利用虚拟武器的预测轨迹计算目标分类精度,并将其与基于滤波器组公共空间模式(FBCSP)的多类分类方法的结果进行了比较,该方法包括互信息选择(MI)和线性判别分析(LDA)模块。

    01
    领券