首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    为什么是InfluxDB | 写在《InfluxDB原理和实战》出版之际

    从2016年起,笔者在腾讯公司负责QQ后台的海量服务分布式组件的架构设计和研发工作,例如微服务开发框架SPP、名字路由CMLB、名字服务、配置中心、NoSQL存储等,在分布式架构、高性能架构、海量服务、过载保护、柔性可用、负载均衡、容灾、水平扩展等方面做了大量的工作,以公共组件的形式,支撑了来自QQ后台和其他BG海量服务的海量流量。后来在2018年底,笔者负责监控大数据平台的研发工作,目标是解决现有监控后台成本高昂的痛点,和支撑内部和外部的海量监控数据的需求,打造千亿级监控大数据平台。 笔者发现当前在监控技术领域缺乏优秀的监控系统,尤其是在海量监控数据场景,很多团队常用的一种做法是堆机器和堆开源软件,比如采用大量高配置的机器,单机百CPU核数、TB内存、数十TB的SSD存储,堆了一堆开源软件,例如Elasticsearch、Druid、Storm、Kafka、Hbase、Flink、OpenTSDB、Atlas、MangoDB等。

    018

    通过案例带你轻松玩转JMeter连载(51)

    性能测试监控 1压测端监控:JMeter集群+InfluxDB存储+Grafana 在压测端,如果发现发出去的进程失败的比例比较多,可以考虑以下两种情形: 1)被测软件的性能达到瓶颈,接受不了如此多的请求。 2)压测端压测工具(比如JMeter)所运行的机器由于发送过多的线程,压测机器资源(CPU、内存、网络或者是磁盘)不够用,需要增加JMeter来解决。 这就需要在执行性能测试的时候,有对应的监控工具来监控。第1节和第3节中介绍的工具均可以达到这个功能,但是JMeter集群+InfluxDB存储+Grafana是目前最友好的监控压测端的工具组合。 JMeter集群+InfluxDB存储+Grafana环境可以安装在Windows、Linux或MAC任意操作系统下,本节以Windows为例进行讲解。 1.1下载安装InfluxDB

    02

    从TDengine的开源说起技术选型

    如果一艘快艇足够承载下你的所有货物到达彼岸,那么你不需要使用一艘轮船出行。产品设计和技术选型也是一样,我们经常会说:“我需要一个能够处理百万规模并发读写操作的,低延时,高可用的系统。” 如果按照这样的需求去设计系统,你可能得到的是一个设计复杂,代价昂贵的通用方案。但是如果仔细分析一下需求,你可能省略了需求背后的一些前提条件,比如真实的需求可能是这样的:“我需要一个能够处理百万规模的并发(只是理论峰值,平均情况小于10万并发)读写操作(读写比例1:9,只有追加写,没有修改操作)的低延时,高可用的(可以接受一定程度数据不一致性的)系统。” 那么你可能可以为这个特定的需求设计一个简单的,高效又低成本的系统。

    03
    领券