今天和大家简单介绍一下孟德尔随机化研究中最常用的两种方法:逆方差加权法(inverse-varianceweighted,IVW)和MR-Egger法。
我们还是以TCGA数据中的CHOL(胆管癌)这套数据为例。关于这套临床数据的下载可以参考
首先,请注意,围绕多级模型的术语非常不一致。例如,多级模型本身可以称为分级线性模型,随机效应模型,多级模型,随机截距模型,随机斜率模型或汇集模型。根据学科,使用的软件和学术文献,许多这些术语可能指的是相同的一般建模策略。
区间回归分析是一种以区间数为研究对象的数据分析方法.区间数能反映出数据的变动范围,更符合现实情况.区间型符号数据是区间数的一种,通过"数据打包"形成,因此除具有区间端点信息外,还具有区间内部散点信息.
在混合效应逻辑回归用于建立二元结果变量的模型,其中,当数据被分组或同时存在固定和随机效应时,结果的对数几率被建模为预测变量的线性组合(点击文末“阅读原文”获取完整代码数据)。
数据库技术,泛指熟练使用SQL技术,不仅是各种关系型数据库的SQL,还有各种大数据平台的SQL,例如Hive-SQL、Spark-SQL等。 对于SQL技术这块,我们重点要掌握增删改查的四种操作,以及与编程语言的交互。 通过SQL技术,我们可以有效完成如下工作:
在混合效应逻辑回归用于建立二元结果变量的模型,其中,当数据被分组或同时存在固定和随机效应时,结果的对数几率被建模为预测变量的线性组合 ( 点击文末“阅读原文”获取完整代码数据******** ) 。 最近我们被客户要求撰写关于混合效应逻辑回归的研究报告,包括一些图形和统计输出。
这个数据集常用于数据概述、可视化和聚类模型。它包括三个鸢尾花品种,每个品种有50个样本,以及一些属性。其中一个花种与其他两个花种是线性可分离的,但其他两个花种之间不是线性可分离的。
在这项工作中,我通过创建一个包含四只基金的模型来探索 copula,这些基金跟踪股票、债券、美元和商品的市场指数
A. 事实上,我们在实验中或者调查之后的分析往往希望通过分组比较来获得有统计学意义的结果,因此分组数据在我们平常的工作中更加常见,也更加科学严谨,那么我们就来了解下分组数据的描述。
该数据与银行机构的直接营销活动相关,营销活动基于电话。通常,需要与同一客户的多个联系人联系,以便访问产品(银行定期存款)是否会(“是”)或不会(“否”)订阅
当面对多个模型时,我们有多种选择。模型选择因其简单性而具有吸引力,但我们正在丢弃有关模型中不确定性的信息。
计算WOE和IV是评分卡模型的一个重要环节,之前没有仔细研究过,但总觉得他们既然可以放在评分卡模型中去解决相应的问题,那应该也可以放在其他模型中解决相似的问题,所以还是很值得研究一下。下文是自己对这两个指标的理解整理。
自 2000 年 1 月以来的股票价格数据。我们使用的是 Microsoft 股票。
GAMLSS模型是一种半参数回归模型,参数性体现在需要对响应变量作参数化分布的假设,非参数性体现在模型中解释变量的函数可以涉及非参数平滑函数,非参数平滑函数不预先设定函数关系,各个解释变量的非线性影响结果完全取决于样本数据。它克服了GAM模型和广义线性模型(Generalized Linear Models, GLM)的一些局限性。
分类数据通常以表格的形式来描述。这一部分就来为大家介绍如何用你的数据创建一个表格及计算相关的频率。
https://docs.qq.com/sheet/DV0dxREV1YkJ0ZmVj
为了分析不同类型、组织起源肿瘤的共性、差异以及新课题。TCGA于2012年10月26日-27日在圣克鲁兹,加州举行的会议中发起了泛癌计划。参考:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6000284/ 为此我也录制了系列视频教程在:TCGA知识图谱视频教程(B站和YouTube直达)
作者 常国珍、吕鸿福 概述: 本文基于 R 语言,通过一个逻辑回归构建汽车贷款申请信用评级的案例,来为大家简单介绍信用风险模型及建模流程、R 语言实现、及中间需要注意的一些问题。包含的主要内容有以下几部分: ● 信用风险模型简述 ● 信用评分模型建模流程/框架 ● 基于 R 语言的汽车贷款申请信用评级案例实现(代码) 以下进入正文 Part 1:信用风险模型简述 说到信用风险模型,常见的有下面三种: n Application(申请评分)模型 Ø 通过客户申请时的信息,预测客户将来发生违约/逾期等的
今天这篇文献主要是为了和大家探讨一下在MR研究中我们如何看待SNP(IV)的数量。
本文的目的是对如何在R中进行生存分析进行简短而全面的评估。关于该主题的文献很广泛,仅涉及有限数量的(常见)问题。可用的R包数量反映了对该主题的研究范围。(点击文末“阅读原文”获取完整代码数据)。
首先,需要确定变量之间是否存在共线性,若存在高度相关性,只需保存最稳定、预测能力最高的那个。需要通过 VIF(variance inflation factor)也就是 方差膨胀因子进行检验。 变量分为连续变量和分类变量。在评分卡建模中,变量分箱(binning)是对连续变量离散化(discretization)的一种称呼。要将logistic模型转换为标准评分卡的形式,这一环节是必须完成的。信用评分卡开发中一般有常用的等距分段、等深分段、最优分段。
R语言系列四的第二个部分是对多组连续性数据的处理,分组往往是三组或者三组以上,当然两组数据也可以利用方差分析,但是两组数据还是建议使用t检验。同样多组数据的比较也分为参数法和非参数法,包括这个部分介绍的重点参数法方差分析,以及非参数方法kruskal—Wallis检验。
普通的线性回归只包含两项影响因素,即固定效应(fixed-effect)和噪声(noise)。噪声是我们模型中没有考虑的随机因素。而固定效应是那些可预测因素,而且能完整的划分总体。例如模型中的性别变量,我们清楚只有两种性别,而且理解这种变量的变化对结果的影响。 那么为什么需要 Mixed-effect Model?因为有些现实的复杂数据是普通线性回归是处理不了的。例如我们对一些人群进行重复测量,此时存在两种随机因素会影响模型,一种是对某个人重复测试而形成的随机噪声,另一种是因为人和人不同而形成的随机
本文基于 CPV 模型, 对房地产信贷风险进行了度量与预测。我们被客户要求撰写关于CPV模型的研究报告
R是一种用于分析数据的领域特定语言。为什么数据分析需要自己的领域特定语言(DSL) ? R语言擅长些什么,不擅长什么?开发人员该如何利用R语言的优势并减轻其弱点? 在GOTO Conference中,
根据爱彼迎的2009-2014年的用户数据,预测用户第一次预约的目的地城市。同时分析用户的行为习惯。
我们已经学习了如何处理混合效应模型。本文的重点是如何建立和_可视化_ 混合效应模型的结果
该模型以珊瑚覆盖层为因变量(elkhorn_LAI),草食动物种群和深度为固定效应(c。urchinden,c.fishmass,c.maxD)和调查地点作为随机效应(地点)。 。 注意:由于食草动物种群的测量规模存在差异,因此我们使用标准化的值,否则模型将无法收敛。我们还使用了因变量的对数。我正在根据这项特定研究对数据进行分组。
尽管Stan提供了使用其编程语言的文档和带有例子的用户指南,但对于初学者来说,这可能是很难理解的。
我们正和一位朋友讨论如何在R软件中用GLM模型处理全国的气候数据。本文获取了全国的2021年全国的气候数据
最近我们被客户要求撰写关于鸢尾花iris数据集的研究报告,包括一些图形和统计输出。
这部分介绍一下R语言中的聚合窗口函数,R语言中的聚合窗口函数与sql中的窗口函数有点差异,R语言中的相同记录的累计求和累计平均不再相同。
我们正和一位朋友讨论如何在R软件中用GLM模型处理全国的气候数据。本文获取了全国的2021年全国的气候数据(点击文末“阅读原文”获取完整代码数据)。
列线图(Alignment Diagram),又称诺莫图(Nomogram图),它是建立在多因素回归分析的基础上,这里的回归既包括Logistic回归也包括cox回归,通过回归分析将多个预测指标进行整合,然后采用带有刻度的线段,表达预测模型中各个变量之间的相互关系。
最近我们被客户要求撰写关于广义线性模型(GLM)的研究报告,包括一些图形和统计输出。
最近我们被客户要求撰写关于逻辑回归的研究报告,包括一些图形和统计输出。 本文介绍了逻辑回归并在R语言中用逻辑回归(Logistic回归)模型分类预测病人冠心病风险数据
本文介绍了逻辑回归并在R语言中用逻辑回归(Logistic回归)模型分类预测病人冠心病风险数据
最近有一些文章提出与年龄相关的问题:“崭露头角的年轻数据科学家们是学习R语言还是Python更好?” 答案似乎都是“视情况而定”,在现实中没有必要在R和Python中做出选择,因为你两个都用得到。 它
线性混合模型假设 N 个受试者的群体是同质的,并且在群体水平上由独特的曲线 Xi(t)β 描述 。
这是我之前关于孟德尔随机化相关课题的一个简单笔记。其中包括了关于孟德尔随机化的简单介绍,以及一些one-sample MR 的R 语言实战。
大量数据中具有"相似"特征的数据点或样本划分为一个类别。聚类分析提供了样本集在非监督模式下的类别划分
因此,方差矩阵的近似将基于通过插入参数的估计量而获得。 然后,由于作为渐近多元分布,参数的任何线性组合也将是正态的,即具有正态分布。所有这些数量都可以轻松计算。首先,我们可以得到估计量的方差
这一节将介绍更多的R图形资源。首先是定制R图形的一些常用方法,主要涉及数据和模型的图形绘制。然后是如何自定义其他类型的图形或点线等元素。
在正文内容开始之前,我先给大家推荐一个文档https://google.github.io/styleguide/Rguide.xml
一个简单的方法就是将每一个特征的幂次方添加为一个新的特征,然后在这个拓展的特征集上进行线性拟合,这种方法成为多项式回归。
领取专属 10元无门槛券
手把手带您无忧上云