平面最近点对,即平面中距离最近的两点
分治算法:
int SOLVE(int left,int right)//求解点集中区间[left,right]中的最近点对
{
double ans...当前集合中的最近点对,点对的两点同属于集合[left,mid]或同属于集合[mid,right]
则ans = min(集合1中所有点的最近距离, 集合2中所有点的最近距离...当前集合最近点对中的两点分属于不同集合:[left,mid]和[mid,right]
则需要对两个集合进行合并,找出是否存在p∈[left,mid],q∈[mid,right...对于temp中的点,枚举求所有点中距离最近两点的距离,然后与ans比较即可。...于是我们可以对temp以y为唯一关键字从小到大排序,进行枚举, 更新ans,然后在枚举时判断:一旦枚举到的点与p点y值之差大于ans,停止枚举。最后就能得到该区间的最近点对。