首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

B+

假定操作系统一次读取一个节点,并且根节点保留在内存中,那么B在100万个数据中查找目标值,只需要读取两次硬盘。B 可以看作是对2-3查找的一种扩展,即他允许每个节点有M-1个子节点。...四、BB+的对比 B和B+的区别在于,B+的非叶子结点只包含导航信息,不包含实际的值,所有的叶子结点和相连的节点使用链表相连,便于区间查找和遍历。...2、B+的优点 由于B+在内部节点上不好含数据信息,因此在内存页中能够存放更多的key。 数据存放的更加紧密,具有更好的空间局部性。...因此访问叶子几点上关联的数据也具有更好的缓存命中率; B+的叶子结点都是相链的,因此对整棵的便利只需要一次线性遍历叶子结点即可。而且由于数据顺序排列并且相连,所以便于区间查找和搜索。...而B则需要进行每一层的递归遍历。相邻的元素可能在内存中不相邻,所以缓存命中性没有B+好。 3、应用 BB+经常被用于数据库中,作为MySQL数据库索引。

48720

B+,索引

引言 时隔一年,我又想起当初看数据库时,看到的B+,就是数据库的索引使用的数据结构。再整理一下,看看自己没有忘记很多吧。 概述 B+之前,先来看一下二叉查找(1,2,3,4,5,6,7) ?...诚然,在二叉查找查找某个元素是很快速的,二分查找嘛。...但想想数据库查找数据的场景: select * from user where id > 10, 显然,对于这种查找区间来说,二叉查找并不高效。那么B+是如何解决这个问题的呢?...没错,这就是B+。 这个结构是怎么想出来的我不知道啊,但是我今天突然发现,他的存储方式和跳表十分之像啊。莫非是受到了跳表的启发?亦或是跳表受到了B+的启发?咱也不知道。...引申 很好,B+整明白了,新的问题出现了。如果数据库使用这种数据结构存储,全部放到内存中肯定是不现实的,势必要将其存储到硬盘中,待查找时再到文件中读取。

88920
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    BB+

    BB+都是用于外查找的数据结构,都是平衡多路查找。 两者的区别 在B+中,具有n个关键字的结点含有n棵子树,即每个关键字对应一颗子树;而在B中,具有n个关键字的结点含有(n+1)棵子树。...在B+中,除根节点外,每个结点中的关键字个数n的取值范围是[m/2]~m,根节点n的取值范围是2~m;而在B中,除根节点外,其他所有非叶结点的关键字个数n的取值范围是[m/2]-1~m-1,根节点n...B+中的所有叶结点包含了全部关键字,即其他非叶结点中的关键字包含在叶结点中;而在B中,关键字是不重复的。...B+中的所有非叶结点仅起到索引的作用,即结点中的每个索引项只含有对应子树的最大关键字和指向该子树的指针,不包含该关键字对应记录的存储地址;而在B中,每个关键字对应一个记录的存储地址。...通常在B+树上有两个头指针,一个指向根节点,另一个指向关键字最小的叶结点,所有叶结点链接成一个不定长的线性链表,所以B+可以进行随机查找和顺序查找;而B只能进行随机查找

    88841

    LSMB+比较

    这就是B+的原理,但是写起来就很糟糕,因为会产生大量的随机IO,磁盘寻道速度跟不上。 关于b B+最大的性能问题是会产生大量的随机io。随着新数据的插入,叶子节点会慢慢分裂。...例如,Oracle 的常用索引使用 B+ 。下面是一个B+的例子 根节点和分支节点很简单,记录每个叶子节点的最小值,用指针指向叶子节点。...关于lsm LSM 本质上是读写之间的平衡。与B+相比,它牺牲了部分读取性能来提高写入性能。...跳表通过对间隔的数据做一个标签索引,产生了多层单链表,在最高层依次确定查找数据的范围,最终将范围缩小到可接受值,我们看跳表其实就是一个二叉查找的变形,只是所有的数据都在最左段,其他节点用来建立查找索引...,如此跳表的插入删除就比二叉查找方便多了 wal日志 首先,我想说一下为什么我们需要wal(写前日志)。

    84920

    红黑、BB+

    红黑:红黑是一种不大严格的平衡(平衡要求太高) 平衡是为了防止二叉查找退化为链表,而红黑在维持平衡以确保 O(log2(n)) 的同时,不需要频繁着调整的结构; 二叉的存储结构 顺序存储...B/B+ B 即:多路平衡查找; B 的巧妙之处在于: 将一个节点的大小设置为一页的大小; 一个节点可以存放多个关键字(多叉); 自平衡; 这 3 点结合起来就可以做到: 一个节点大小为一页,...B/B+的索引数量 B 的节点中存储:指针、关键字(主键)、数据 B+ 的非叶子节点:指针、关键字 B+的叶子节点:指针(链表)、关键字、数据 注意,这里不是绝对的,比如有的 B+ 中叶子节点存储的不是数据...而且上述是假设数据为 1KB,如果数据没那么大,高度为 3 的 B 能存储更多的数据,但是如果用在大型数据库索引上还是不够。 B+ B+ 如上图,B+的核心在于非叶子节点不存储数据。...B/B+的优点 更适合磁盘存储,减少了的层级,进而减少 I/O 次数; B B+ 对比 都是 B ,但是 B+更适合范围查询,比如 Mysql,且查询次数很稳定,为 logn。

    85840

    浅谈 B+

    目前常见的主要的三种存储引擎是:哈希、B+、LSM。LSM下次再说,hash讲过了。 没有什么B-,那是 B-tree,国内一直翻译成B-,其实就是B。...B我也不想说了,因为已经被升级过了,叫B+。 下图来自 小灰的算法之旅,懂得人自然就懂了: ---- 对比一下B: 这个是B。...---- B+对于B的改进 1、所有数据都在叶子节点。算法更容易理解了。回头抽空手写一下B+,正好跳表也要重写了。 2、底层叶子节点使用链表串起来了。 这第二个改进不可谓不秀。...单这么看自然是不明所以的,但是凡事都要放在上下文中去看,B+的上下文对应的就是磁盘IO的索引呐,那如果我要范围查询呢?比如说我要上面里面 4-10 的所有数据,B 怎么作为?B+怎么作为?

    37820

    BB+的区别及MySQL为何选择B+

    BB+的区别及MySQL为何选择B+ 1. BB+的定义 BB+都是一种多路搜索,常用于数据库和文件系统中进行索引操作。在介绍BB+的区别之前,先来了解一下它们的定义。...B B是一种平衡查找,其每个节点最多包含k个孩子,k称为B的阶。除根节点和叶子节点外,其它每个节点至少有ceil(k/2)个孩子,即一个节点可以拥有的关键字数在ceil(k/2)和k之间。...B+ B+也是一种多路搜索,与B相似,但在B+中,所有的数据都存储在叶子节点中,而非在非叶子节点中。B+满足以下条件: 所有关键字都出现在叶子节点的链表中,且链表中的关键字恰好是有序的。...BB+的区别 BB+虽然都是多路搜索,但它们的区别还是比较明显的。 存储结构 B的非叶子节点中既包含索引,也包含数据,而B+的非叶子节点中只包含索引,数据都存储在叶子节点中。...查询性能 B+的查询性能更优,因为B+的数据都存储在叶子节点中,而B的数据既可能存储在非叶子节点中,也可能存储在叶子节点中。

    84510

    BB+、B*——简单介绍

    BB+、B*——简单介绍 强烈推介IDEA2020.2破解激活,IntelliJ...如果允许每个节点可以有更多的数据项和更多的子节点,就是多叉; 【2】2-3,2-3-4就是多叉,多叉通过重新组织节点,减少的高度,能对二叉进行优化。如下图就是一个2-3; ?...【3】文件系统及数据库系统的设计者利用磁盘预读(预先读取)原理,将一个节点的大小设置为页的大小(通常为4k),这样每个节点只需要一次 IO就能载入内存;B(B+)广泛应用于文件存储系统及数据库文件系统中...三、BB+、B* ---- 【1】B介绍:前面介绍的2-3、2-3-4就是 B,在 MySql 中经常听说某种索引是基于 BB+的,如下图: ?...【2】B+介绍:B+ 是B的变体,也是一种多路搜索,如下图: ? 【3】B* 介绍:B* B+的变体,在B+的非根和非叶子节点增加了指向兄弟的指针,如下图: ?

    1.2K20

    红黑、BB+

    红黑:红黑是一种不大严格的平衡(平衡要求太高) 平衡是为了防止二叉查找退化为链表,而红黑在维持平衡以确保 O(log2(n)) 的同时,不需要频繁着调整的结构; 二叉的存储结构 顺序存储...B/B+ B 即:多路平衡查找; B 的巧妙之处在于: 将一个节点的大小设置为一页的大小; 一个节点可以存放多个关键字(多叉); 自平衡; 这 3 点结合起来就可以做到: 一个节点大小为一页,...B/B+的索引数量 B 的节点中存储:指针、关键字(主键)、数据 B+ 的非叶子节点:指针、关键字 B+的叶子节点:指针(链表)、关键字、数据 注意,这里不是绝对的,比如有的 B+ 中叶子节点存储的不是数据...而且上述是假设数据为 1KB,如果数据没那么大,高度为 3 的 B 能存储更多的数据,但是如果用在大型数据库索引上还是不够。 B+ B+ 如上图,B+的核心在于非叶子节点不存储数据。...B/B+的优点 更适合磁盘存储,减少了的层级,进而减少 I/O 次数; B B+ 对比 都是 B ,但是 B+更适合范围查询,比如 Mysql,且查询次数很稳定,为 logn。

    69600

    mysql B+索引

    上图就是一棵B+,每个部分有3个主要概念:物理磁盘块、数据项(蓝色)、指针(红色) 如磁盘块1,包含数据项 17、35,包含指针 P1、P2、P3,P1指向小于17的磁盘块,P2指向在17和35之间的磁盘块...真实的数据存于叶子节点中,即 3、5、9、10、13、15、28、29、36、60、75、79、90、99 非叶子节点中并不存放真实数据项,只存放指引搜索方向的数据项,如 17、35 并不真实存在于数据表中 B+...查找过程 如果要查找数据项29 1....在内存中用二分查找确定29在17和35之间,锁定磁盘块1的P2指针,通过P2指向的磁盘地址,把磁盘块3由磁盘加载到内存,发生第二次IO 3. 29在26和30之间,锁定磁盘块3的P2指针,通过指针加载磁盘块...内存中做二分查找找到29,结束查询 总计三次IO,即可找到目标数据项 3层的B+可以表示上百万的数据,对查询性能的提高是巨大的

    91280

    多叉 & B & B+ & B*

    比如2-3的阶就是3,2-3-4的阶就是4; B的搜索:从根节点开始,对节点内的元素进行二分查找,如果找到就结束,否则进入查找元素所属范围的子节点再进行二分查找,直到找到或者到达叶子节点; B的所有节点都会存放数据...B+B+是B的变体,和B的区别就是,B+所有数据都存放在叶子节点。...B+所有的数据都存放在叶子节点的链表中,且链表中的数据也是有序的; 非叶子节点中存放的是索引,而不是要操作的数据,每个非叶子节点都会存放叶子节点的索引,也叫稀疏索引; B+要进行搜素时,从根节点开始...,通过与根节点索引的比较,就知道要往左子树查找还是往中间查找还是往右子树查找,到了子树的时候再通过与子树中存放的索引比较,又可以直到要往那一边查找。...B+一般用于文件系统; 6. B*: B*又是B+的变体,就是在B+的基础上,在非根非叶子节点之间增加了指向兄弟节点的指针。

    1.5K20

    B B- B+ B*

    ; 如果B的所有非叶子结点的左右子树的结点数目均保持差不多(平衡),那么B的搜索性能逼近二分查找;但它比连续内存空间的二分查找的优点是,改变B树结构(插入与删除结点)不需要移动大段的内存数据,甚至通常是常数开销...B-的搜索,从根结点开始,对结点内的关键字(有序)序列进行二分查找,如果命中则结束,否则进入查询关键字所属范围的儿子结点;重复,直到所对应的儿子指针为空,或已经是叶子结点; B-的特性:       ...M/2的结点;删除结点时,需将两个不足M/2的兄弟结点合并; B+        B+是B-的变体,也是一种多路搜索:        1.其定义基本与B-同,除了:        2.非叶子结点的子树指针与关键字个数相同...B+的搜索与B-也基本相同,区别是B+只有达到叶子结点才命中(B-可以在 非叶子结点命中),其性能也等价于在关键字全集做一次二分查找;     B+的特性:        1.所有关键字都出现在叶子结点的链表中...是B+的变体,在B+的非根和非叶子结点再增加指向兄弟的指针; ?

    1.7K70

    理解 B+ 算法

    这种设计在扫描时可以避免的耗时的遍历操作。所以,b+通常可以提供两种查找方式,一,从根节点起随机查找(起点是指向根节点的root); 二,顺序查找(起点是指向最小关键字的sqt)。...B在根部生长,而不是在叶子上生长。 举个栗子:往下图的3阶B+中依次插入关键字:10、21、68、65、85 首先查找10应插入的叶节点(最左下角的那一个),插入发现没有破坏B+的性质,完毕。...B+的性质,则把之再分解成[8 15], [34 93]两个,并把8和34(由于此时是根节点)向上产生一个新根节点; 如下图: 接着查找68应插入的叶节点(第三个叶子节点),插入发现没有破坏B+的性质...插完如下图所示: 接着查找65应插入的叶节点(第三个叶子节点),插入,发现该叶子节点已经破坏了B+的性质,则分解成[34 65], [68 78]两个,并把68往父节点移;如下图所示: 最后查找85应插入的叶节点...而B+内部结点只需要1个盘块。当需要把内部结点读入内存中的时候,B 就比B+多一次盘块查找时间(在磁盘中就是盘片旋转寻道的时间)。

    2.6K00

    BB+的区别

    B+的叶子节点由一条链相连,而B的叶子节点各自独立。 使用B+的好处 由于B+的内部节点只存放键,不存放值,因此,一次读取,可以在内存页中获取更多的键,有利于更快地缩小查找范围。...针对以上两个问题,B+诞生了,B+相比B,本质上是一样的,区别就在与B+的所有根节点都不带有任何数据信息,只有索引信息,所有数据信息全部存储在叶子节点里,这样,整个的每个节点所占的内存空间就变小了...那么,我们最后再总结一下B+的优点:        (1) B+的磁盘读写代价更低               B+的内部结点并没有指向关键字具体信息的指针。因此其内部结点相对B更小。...一次性读入内存中的需要查找的关键字也就越多。相对来说IO读写次数也就降低了。        ...所以任何关键字的查找必须走一条从根结点到叶子结点的路。所有关键字查询的路径长度相同,导致每一个数据的查询效率相当。

    4.7K41

    从B B+ 、B* 谈到R

    第一节、BB+、B* 1.前言: 动态查找主要有:二叉查找(Binary Search Tree),平衡二叉查找(Balanced Binary Search Tree),红黑(Red-Black...而B+ 内部结点只需要1个盘快。当需要把内部结点读入内存中的时候,B 就比B+ 多一次盘块查找时间(在磁盘中就是盘片旋转的时间)。...7.总结 通过以上介绍,大致将BB+,B*总结如下: B:有序数组+平衡多叉B+:有序数组链表+平衡多叉; B*:一棵丰满的B+。...Bucket Li:"mysql 底层存储是用B+实现的,知道为什么么。内存中B+是没有优势的,但是一到磁盘,B+的威力就出来了"。...http://slady.net/java/bt/view.php(如果了解了B-tree结构,该地址可以在线对该结构进行查找(search),插入(insert),删除(delete)操作。)

    2.2K10

    树结构系列(三):BB+

    文章首发于「陈义」公众号及个人博客 shuyi.tech 平衡二叉查找效率是非常高的,并可以通过降低的深度来提高查找的效率。...B+ 查询效率更加稳定 由于非终结点并不是最终指向文件内容的结点,而只是叶子结点中关键字的索引。所以 B+ 中任何关键字的查找必须走一条从根结点到叶子结点的路。...B+ 便于范围查询(最重要的原因,范围查找是数据库的常态) B 在提高了 IO 性能的同时,并没有解决元素遍历效率低下的问题。为了解决这个问题,B+ 应用而生。...B+ 比起 B ,最大的差异是非叶子节点不再存储具体数据,以及叶子节点是链表结构。非叶子节点不再存储具体数据,这使得 B+ 更加扁平化,查找效率更高。...叶子节点是链表结构,这使得 B+ 更适合用在范围查找的场景中。 文章首发于「陈义」公众号及个人博客 shuyi.tech,欢迎访问更多有趣有价值的文章。

    1.3K10
    领券