以秒杀业务为例,10个iphone,100万人抢购,100万人同时发起请求,最终能够抢到的人也就是前面几个人,后面的基本上都没有希望了,那么我们可以通过控制并发数来实现,比如并发数控制在10个,其他超过并发数的请求全部拒绝,提示:秒杀失败,请稍后重试。
说起 限速 ,想必各位不会陌生。通常在一个服务程序当中,限速指的是对同一类请求进行速率的限制,用来防止服务端某些资源被过度消耗,从而保障服务的稳定性。
前面我们了解了如何利用Nginx做网关层限流,这一小节我们学习 个稍微复杂一 点的分布式限流手段,利用Redis+Lua实现服务端限流,
任何限流都不是漫无目的的,也不是一个开关就可以解决的问题,常用的限流算法有:令牌桶,漏桶。在之前的文章中,也讲到过,但是那是基于单机场景来写。
Roadmap 时间点: 版本Milestone 主要特性 版本Milestone 主要特性
本篇文章介绍的是SpringCloud Alibaba技术栈中针对熔断限流的解决方案——Sentinel,本篇文章的大纲如下所示: 一、概念介绍
在微服务和高并发系统中,限流(Rate Limiting)是一种非常重要的技术手段,用于保护系统免受过载,确保服务的稳定性。限流可以控制请求的速率,防止单个客户端或恶意用户消耗过多的资源,从而影响其他用户。
本节介绍的分布式令牌桶限流通过Lua+Java结合完成,首先在Lua脚本中完成限流的计算,然后在Java代码中进行组织和调用。
在分布式高可用设计中,限流应该是应用最广泛的技术手段之一,今天一起来讨论一下,为什么需要限流,以及常见的限流算法都有哪些。
如上最左侧便是主要流量的来源入口,首先就要限制的地方就是slb节点的income流量。
笔者一直在使用微信的微信公众号平台去管理公众号中的技术文章,但是今天多刷了几下,居然就被限流了,没错就连这样的纯碎面向B端(就像我们这些公众号主)的后台管理系统都用到了限流技术,那么我们面向C端的业务产品凭什么还不用呢?
Aeraki 可以帮助你在服务网格中管理任何七层协议。目前 Aeraki 已经支持了 Dubbo、Thrit、Redis 等开源协议。你还可以使用 Aeraki 的 MetaProtocol 协议扩展框架来管理私有协议的七层流量。
Spring Boot - 利用Resilience4j-RateLimiter进行流量控制和服务降级
如上最左侧便是主要流量的来源入口,首先就要限制的地方就是slb节点的income流量
·acceptCount:如果Tomcat的线程都忙于响应,新来的连接会进入队列排队,如果超出排队大小,则拒绝连接
今天热搜“海底捞的排号系统挂掉了”,也许是今天情人节,各位情侣去海底捞约会,进入排号系统的流量猛增,导致服务支撑不住,直接挂掉,在这里只是猜测(大胆猜测,小心求证)。那我们应该如何防止因为流量突然猛增而导致服务挂掉的问题呢?那就是限流了。 那我们通过redis 来设计限流策略。
有一段时间里,博客总是三天两头被打,其中就遇到了恶意刷接口的手段,对方明显使用的代码IP,由于博客并没有做这方面的措施,加上被大量盗刷的接口刚好是数据量最大的一篇文章数据,所以不出意外的,博客没多久就崩了。服务器状态也是各种异常。所以吃一堑长一智吧算是,我也没想到面对一个个人小破站,对面也是饥不择食….真大黑客啊兄弟们!!!
之前使用了JDK自带的 Map 实现了自定义限速的简单需求。在当时的实现当中,有一个被隐藏的小设计,就是如果是用使用异步线程,用来根据配置给请求次数数据重置。如此这样,校验方法会非常简单方便。
限流是指在各种应用场景中,通过技术和策略手段对数据流量、请求频率或资源消耗进行有计划的限制,以避免系统负载过高、性能下降甚至崩溃的情况发生。限流的目标在于维护系统的稳定性和可用性,并确保服务质量。
在分布式领域,我们难免会遇到并发量突增,对后端服务造成高压力,严重甚至会导致系统宕机。为避 免这种问题,我们通常会为接口添加限流、降级、熔断等能力,从而使接口更为健壮。Java领域常见的 开源组件有Netflix的hystrix,阿里系开源的sentinel等,都是蛮不错的限流熔断框架。
前面我们了解了什么是分布式限流,这一节我们就来细数一下分布式限流都有哪些常见方案。
限流的目的是通过对并发访问/请求进行限速来保护系统,一旦达到限制速率则可以拒绝服务(定向到错误页)、排队等待(秒杀)、降级(返回兜底数据或默认数据)。 高并发系统常见的限流有:限制总并发数(数据库连接池)、限制瞬时并发数(如nginx的limit_conn模块,用来限制瞬时并发连接数)、限制时间窗口内的平均速率(nginx的limit_req模块,用来限制每秒的平均速率)。 另外还可以根据网络连接数、网络流量、CPU或内存负载等来限流。
作者个人研发的在高并发场景下,提供的简单、稳定、可扩展的延迟消息队列框架,具有精准的定时任务和延迟队列处理功能。自开源半年多以来,已成功为十几家中小型企业提供了精准定时调度方案,经受住了生产环境的考验。为使更多童鞋受益,现给出开源框架地址:
限流想必大家都不陌生,它是一种控制资源访问速率的策略,用于保护系统免受过载和崩溃的风险。限流可以控制某个服务、接口或系统在一段时间内能够处理的请求或数据量,以防止系统资源耗尽、性能下降或服务不可用。
微服务治理中限流、熔断、降级是一块非常重要的内容。目前市面上开源的组件也不是很多,简单场景可以使用Guava,复杂场景可以选用Hystrix、Sentinel。今天要说的就是Sentinel,Sentinel是一款阿里开源的产品,只需要做较少的定制开发即可大规模线上使用。从使用感受上来说,它有以下几个优点:
看到标题中的几个关键字系统自适应限流是不是觉得高大上,这个自适应又是如何实现的呢?
我们在日常生活中,就有很多限流的例子,比如地铁站在早高峰的时候,会利用围栏让乘客们有序排队,限制队伍行进的速度,避免大家一拥而上;再比如在疫情期间,很多景点会按时段限制售卖的门票数量,避免同一时间在景区的游客太多等等。
大家好,我是 Semaphore,我的中文名字叫“信号量”,我来自 JUC(java.util.concurrent)家族。
Java中对于生产者消费者模型,或者小米手机营销(1分钟卖多少台手机)等都存在限流的思想在里面。
但是我们也知道,限流器在每次请求令牌和放入令牌操作中,存在一个协同的问题,即获取令牌操作要尽可能保证原子性,否则无法保证限流器是否能正常工作。在RateLimiter的实现中使用了mutex作为互斥锁来保证操作的原子性,那么在redis中就需要一个类似于事务的机制来保证获取令牌中多重操作的原子性。 面对这样的需求,我们有几个选择:
常见的算法有 漏桶(leaky bucket)、 令牌桶(TokenBucket)、 计数器,本章通过最简单的代码和最直白的文字描述三种的实现方式(基于本地而不是分布式)...
Sentinel 限流的规则默认情况下是没有持久化,如果需要持久化的话用 zk、nacos、携程阿波罗
计数器算法是在一定的时间间隔里,记录请求次数,当请求次数超过该时间限制时,就把计数器清零,然后重新计算。当请求次数超过间隔内的最大次数时,拒绝访问。
最近几年,随着微服务的流行,服务和服务之间的依赖越来越强,调用关系越来越复杂,服务和服务之间的稳定性越来越重要。在遇到突发的请求量激增,恶意的用户访问,亦或请求频率过高给下游服务带来较大压力时,我们常常需要通过缓存、限流、熔断降级、负载均衡等多种方式保证服务的稳定性。其中限流是不可或缺的一环,这篇文章介绍限流相关知识。
在高并发场景下,为了保护系统的稳定性和可用性,需要对请求进行限流。本文介绍几种生产环境中常见的限流算法,并结合Java代码实现。
合法性验证限流为最常规的业务代码,就是普通的验证码和 IP 黑名单系统,本文就不做过多的叙述了,我们重点来看下后两种限流的实现方案:容器限流和服务端限流。
经典限流算法 在介绍分布式限流之前,先介绍经典限流算法。经过笔者自己的整理,核心的算法主要可以总结为以下两类四种: A类:计数器法,滑动窗口法 B类:令牌桶法,漏桶法 这里的四种算法通常都是在应用级别讨论的,这里不重复介绍这四种算法的实现思路了,只不过我人为的将他们分成了A,B两类。 A类算法,否决式限流。即如果系统设定限流方案是1分钟允许100次调用,那么真实请求1分钟调用200次的话,意味着超出的100次调用,得到的是空结果或者调用频繁异常。 B类算法,阻塞式限流。即如果系统设定限流方案是1分钟允许10
对于web应用的限流,光看标题,似乎过于抽象,难以理解,那我们还是以具体的某一个应用场景来引入这个话题吧。在日常生活中,我们肯定收到过不少不少这样的短信,“双11约吗?,千款….”,“您有幸获得唱读卡,赶快戳链接…”。这种类型的短信是属于推广性质的短信。为什么我要说这个呢?听我慢慢道来。一般而言,对于推广营销类短信,它们针对某一群体(譬如注册会员)进行定点推送,有时这个群体的成员量比较大,甚至可以达到千万级别。因此相应的,发送推广短信的量也会增大。然而,要完成这些短信发送,我们是需要调用服务商的接口来完成的。倘若一次发送的量在200万条,而我们的服务商接口每秒能处理的短信发送量有限,只能达到200条每秒。那么这个时候就会产生问题了,我们如何能控制好程序发送短信时的速度昵?于是限流这个功能就得加上了
Stream 和 Collection 集合的区别:Collection 是一种静态的内存数据结构,讲的是存储数据,而 Stream 是有关计算的(排序、查找、过滤、映射、遍历等),讲的是对数据进行计算。前者是主要面向内存,存储在内存中,后者主要是面向 CPU,通过 CPU 实现计算。
缓存:缓存是提高系统访问速度,缓解CPU处理压力的关键,同时可以提高系统的处理容量。
今天讲的 redis+lua 解决分布式限流 任何框架都能用,只要能集成 redis就可以,不管是微服务 dubbo、springcloud,还是直接用 springboot或者 springMVC都通用的方法。
首先我们编写注解类AccessLimit,使用注解方式在方法上限流更优雅更方便!三个参数分别代表有效时间、最大访问次数、是否需要登录,可以理解为 seconds 内最多访问 maxCount 次。
在构建微服务系统中,必不可少的技术就是网关了,从早期的Zuul,到现在的Spring Cloud Gateway,网关我们用的不可少。
限流是一种控制访问速率的策略,用于限制系统、服务或API接口的请求频率或数量。它的目的是为了保护系统免受过多请求的影响,防止系统因过载而崩溃或变得不可用。限流是一种重要的性能优化和资源保护机制。
为了上班方便,去年我把自己在北郊的房子租出去了,搬到了南郊,这样离我上班的地方就近了,它为我节约了很多的时间成本,我可以用它来做很多有意义的事,最起码不会因为堵车而闹心了,幸福感直线上升。
领取专属 10元无门槛券
手把手带您无忧上云