在上面提到的 TLAB 大小设计的时候,我们经常提到期望。这个期望是根据历史数据计算得出的,也就是每次输入采样值,根据历史采样值得出最新的期望值。不仅 TLAB 用到了这种期望计算,GC 和 JIT 等等 JVM 机制中都用到了。这里我们来看一种 TLAB 中经常用到的 EMA(Exponential Moving Average 指数平均数) 算法:
本文转自知乎,作者立夏之光。AI科技评论获授权转载,如需转载请联系原作者。原文链接:https://dwz.cn/3BFMz8pW
本文介绍笔者被 ICCV 2019 接受为 Oral 的论文 Expectation-Maximization Attention Networks for Semantic Segmentation[1]。论文作者为:李夏、钟之声、吴建龙、杨一博、林宙辰、刘宏。
经常听到 Java 性能不如 C/C++ 的言论,也经常听说 Java 程序需要预热,那么其中主要原因是啥呢?
本期内容比较硬核,非常全面,涉及到了设计思想到实现原理以及源码,并且还给出了相应的日志以及监控方式,如果有不清楚或者有疑问的地方,欢迎留言。
其中a的取值范围[0,1],具体就是:本次滤波结果=(1-a)*本次采样值+a*上次滤波结果,采用此算法的目的是:
之前我们提到了引入 TLAB 要面临的问题以及解决方式,根据这些我们可以这么设计 TLAB。
EMA表示的是指数平滑移动平均,其函数的定义为Y=EMA(X,N) 则Y=[2*X+(N-1)*Y']/(N+1), 其中Y'表示上一周期Y值。 求X的N日指数平滑移动平均,它真正的公式表达是:当日指数平均值=平滑系数*(当日指数值-昨日指数平均值)+昨日指数平均值;平滑系数=2/(周期单位+1) EMA引用函数在计算机上使用递归算法很容易实现,但不容易理解。以下,列举分析说明EMA函数。 X是变量,每天的X值都不同,从远到近地标记,它们分别记为X1,X2,X3,….,Xn 当N=1,则EMA(X,1)=[
滑动平均模型可以使模型在测试数据上更健壮(robust)的方法------滑动平均模型。在采用随机梯度下降算法训练神经网络时,使用滑动平均模型在很多应用中都可以在一定程度提高最终模型在测试数据上的表现。
主要保证 GC 的时候扫描高效。由于 TLAB 仅线程内知道哪些被分配了,在 GC 扫描发生时返回 Eden 区,如果不填充的话,外部并不知道哪一部分被使用哪一部分没有,需要做额外的检查,如果填充已经确认会被回收的对象,也就是 dummy object, GC 会直接标记之后跳过这块内存,增加扫描效率。反正这块内存已经属于 TLAB,其他线程在下次扫描结束前是无法使用的。这个 dummy object 就是 int 数组。为了一定能有填充 dummy object 的空间,一般 TLAB 大小都会预留一个 dummy object 的 header 的空间,也是一个 int[] 的 header,所以 TLAB 的大小不能超过int 数组的最大大小,否则无法用 dummy object 填满未使用的空间。
SMA(Simple Moving Average),即简单移动平均,其公式如下:
FBNetV2: https://arxiv.org/abs/2004.05565
算法交易的主要类型有:(1)被动型算法交易,也称结构型算法交易。该交易算法除利用历史数据估计交易模型的关键参数外,不会根据市场的状况主动选择交易时机和交易的数量,而是按照一个既定的交易方针进行交易。该策略的的核心是减少滑价(目标价与实际成交均价的差)。被动型算法交易最成熟,使用也最为广泛,如在国际市场上使用最多的成交加权平均价格(VWAP)、时间加权平均价格(TWAP)等都属于被动型算法交易。(2)主动型算法交易,也称机会型算法交易。这类交易算法根据市场的状况作出实时的决策,判断是否交易、交易的数量、交易的价格等。主动型交易算法除了努力减少滑价以外,把关注的重点逐渐转向了价格趋势预测上。(3)综合型算法交易,该交易是前两者的结合。这类算法常见的方式是先把交易指令拆开,分布到若干个时间段内,每个时间段内具体如何交易由主动型交易算法进行判断。两者结合可达到单纯一种算法无法达到的效果。
在自动驾驶、AR 等实际应用场景下,用于点云的深度神经网络模型非常需要实时交互和快速响应。但是,它们的部署环境通常是一些资源受限的边缘设备。
之前在人工智能课上自己手动搭建过一个BP神经网络实现MNIST数据集的手写体数字识别,使用的是c++,最终准确率的上限在95%至96%左右(毕竟水平有限)。这次不一样了,使用tensorflow进行实验,准确率确实提高了不少。可能有人会觉得tensorflow有点过时,现在的大企业不怎么用tensorflow了,但我觉得,对于初学者来说,tensorflow还是不错的选择。
DolphinDB为海量结构化数据的极速存储、检索、计算与分析提供了一站式解决方案,特别适合金融行业用来处理大规模数据,尤其是L1,L2以及逐笔委托的行情数据。
本文介绍了tensorflow控制依赖的两种方式,分别是tf.control_dependencies和tf.assign。同时,本文还介绍了两种不适用于tf.control_dependencies的情况,分别是使用变量初始值作为控制依赖以及在一个Session中同时使用多个控制依赖。
【波士顿动力新一期视频:Atlas机器人是如何工作的】 Alias机器人越来越接近真人,视频里面展现的动作细节和真人几乎无差别。 https://v.qq.com/x/page/w3269xn2cgv.html https://blog.bostondynamics.com/atlas-leaps-bounds-and-backflips
Along He, Tao Li, Juncheng Yan, Kai Wang, Huazhu Fu
本文介绍我们在ICCV 2021 LVIS Challenge Workshop上的冠军解决方案。
DDPG(deep deterministic policy gradient),深度确定性策略梯度算法。
今天将分享Unet的改进模型H2NF-Net,改进模型来自2020年的论文《H2NF-Net for Brain Tumor Segmentation using Multimodal MR Imaging: 2nd Place Solution to BraTS Challenge 2020 Segmentation Task》,简单明了给大家分析理解该模型思想。
量化投资与机器学习微信公众号,是业内垂直于量化投资、对冲基金、Fintech、人工智能、大数据等领域的主流自媒体。公众号拥有来自公募、私募、券商、期货、银行、保险、高校等行业30W+关注者,荣获2021年度AMMA优秀品牌力、优秀洞察力大奖,连续2年被腾讯云+社区评选为“年度最佳作者”。 源代码请点击阅读原文 在QIML公众号官方GitHub查看 前言 上一篇Qlib的分享中,我们主要介绍了如何将外部数据导入qlib中,转换为qlib的数据格式。 Qlib来啦:数据篇(一) 顺便要给大家介绍一下我们之前
本篇文章通过TensorFlow搭建最基础的全连接网络,使用MNIST数据集实现基础的模型训练和测试。
神经网络在多个领域都取得了不错的成绩,但是神经网络的合理设计却是比较困难的。在本篇论文中,作者使用 递归网络去省城神经网络的模型描述,并且使用 增强学习训练RNN,以使得生成得到的模型在验证集上取得最大的准确率。
来自 | 知乎 地址 | https://zhuanlan.zhihu.com/p/68748778
通过通道降维来建模跨通道关系可能会给提取深度视觉表示带来副作用。本文提出了一种新的高效的多尺度注意力(EMA)模块。以保留每个通道上的信息和降低计算开销为目标,将部分通道重塑为批量维度,并将通道维度分组为多个子特征,使空间语义特征在每个特征组中均匀分布。
从数学角度来分析,MACD指标是根据均线的构造原理,对股票收盘价进行平滑处理,计算出算术平均值以后再进行二次计算,它是属于趋向类指标。
本文介绍了如何使用 TensorFlow 的 Exponential Moving Average(EMA)来训练神经网络,并使用 Saver 保存模型。在测试阶段,可以使用 Saver 加载保存的模型,并使用 EMA 对变量进行推理。
随着先进的目标检测器和基于运动的关联算法的成功,除了简单的移动平均模型之外,视觉外观与基于运动的匹配的有效集成仍然相对不足。
tf.train.ExponentialMovingAverage是指数加权平均的求法,具体的公式是 total=a*total+(1-a)*next,
报告认为高阶矩可以刻画资产价格的变化,并且有一定的领先性,可以以此构造指数择时策略,原理见研报(在公众号后台回复“高阶矩”获取研报和代码)
移动平均法是用一组最近的实际数据值来预测未来一期或几期内公司产品的需求量、公司产能等的一种常用方法。移动平均法适用于即期预测。当产品需求既不快速增长也不快速下降,且不存在季节性因素时,移动平均法能有效地消除预测中的随机波动,是非常有用的。移动平均法根据预测时使用的各元素的权重不同
本篇文章聊聊 Stable Diffusion 生态中呼声最高、也是最复杂的开源模型管理图形界面 “stable-diffusion-webui” 中和 VAE 相关的事情。
深度神经网络在各种应用中取得了显著的成功,包括图像分类、目标检测和语义分割。然而,将它们部署在边缘设备(如移动电话、智能相机和无人机)上却是一项重大的挑战,因为这些设备通常具有有限的计算和内存资源。这些设备通常具有有限的电池寿命、存储容量和处理能力,这使得执行复杂的神经网络具有挑战性。
作者:刘威威 小编:赵一帆 前言:Batchnorm是深度网络中经常用到的加速神经网络训练,加速收敛速度及稳定性的算法,可以说是目前深度网络必不可少的一部分。 本文旨在用通俗易懂的语言,对深度学习的常用算法--batchnorm的原理及其代码实现做一个详细的解读。本文主要包括以下几个部分。 01 Batchnorm主要解决的问题 首先,此部分也即是讲为什么深度网络会需要batchnorm,我们都知道,深度学习的话尤其是在CV上都需要对数据做归一化,因为深度神经网络主要就是为了学习训练数据的分布,并在测
前言:Batchnorm是深度网络中经常用到的加速神经网络训练,加速收敛速度及稳定性的算法,可以说是目前深度网络必不可少的一部分。 本文旨在用通俗易懂的语言,对深度学习的常用算法--batchnorm的原理及其代码实现做一个详细的解读。本文主要包括以下几个部分。
今天为大家介绍的是来自McVicker团队的一篇论文。这篇论文讨论了过去十年(2013-2022年)新药批准中与手性相关的趋势。了解和理解新药批准的最新趋势,有潜力启发和促进新药发现的创新。鉴于药品批准的成本,在药物开发初期做出关于药物手性的正确选择,可以节省大量的成本。确定像手性转换和药物再利用这样的做法对患者影响的大小,需要有数据来显示这些做法被利用的频率。
本文独家改进:本文首先复现了将EMA引入到RT-DETR中,并跟不同模块进行结合创新;1)多种Rep C3结合;2)直接作为注意力机制放在网络不同位置;
VAE,即变分自编码器(Variational Autoencoder),是一种生成模型,它通过学习输入数据的潜在表示来重构输入数据。
今天用YunYang的evaluate.py评估模型的时候,意外发现用同样的ckpt权重文件转换而成的pb文件效果不一样,使用ckpt的效果非常差,仔细研究后才发现是滑动平均(EMA)搞的鬼,于是便重新重温了一下EMA。 目录 EMA定义 EMA原理理解 ckpt和pb保存不同的原因 参考 EMA定义与原理 EMA(ExponentialMovingAverage),也就是我们常说的滑动平均模型,一般在采用SGD(随机梯度下降)训练的时候,都会用他来提高我们在测试数据的表现,我们从[1]结合tensorfl
经过一年争分夺秒的研发,各国疫苗都取得了阶段性进展。2020年的最后一天,国务院联防联控机制31日发布,国药集团中国生物的新冠病毒灭活疫苗已获国家药监局批准符合条件上市,未来将为全民免费提供。
现代AI研究正在迅速融入作者的日常生活。然而,大多数最先进模型庞大且依赖远程访问,因为它们无法轻松部署在边缘设备如移动电话、智能配件或可穿戴医疗设备上。对于许多应用,模型在本地运行且无需依赖网络的需求突显了在模型设计中平衡性能与参数效率的重要性。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_25737169/article/details/79048516
梯度下降算法主要用户优化单个参数的取值,而反向传播算法给出了一个高效的方式在所有参数上使用梯度下降算法,从而使神经网络模型在训练数据上的损失函数尽可能小。反向传播算法是训练神经网络的核心算法,他可以根据定义好的损失函数优化神经网络中参数的取值,从而使神经网络在训练数据集上的损失函数达到一个最小值。神经网络模型中参数的优化过程直接决定了模型的质量,是使用神经网络时非常重要的一步。
对于mnist数据集,具体的一些介绍我这里就不搬运过来了,这里我直接说我们如何在TensorFlow上使用mnist数据集.
大家好,在这一篇文章中,我们将做以下的三件事: 1:介绍mnist数据集的使用 2:创建模型,并且保存模型 3:在测试集中使用保存的模型进行检测 一:介绍mnist数据集的使用 对于mnist数据集,具体的一些介绍我这里就不搬运过来了,这里我直接说我们如何在TensorFlow上使用mnist数据集. 在我们将mnist数据集准备喂入神经网络时,我们需要提前对数据集进行处理,因为数据集的大小是28*28像素,我们就将每张图片处理成长度784的一维数组,将这个数组作为神经网络的训练特征喂入神经网络. 举个例子
领取专属 10元无门槛券
手把手带您无忧上云