首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【Hadoop】17-在集群上运行MapRedece

    本地作业运行器使用单JVM运行一个作业,只要作业需要的所有类都在类路径(classpath)上,那么作业就可以正常执行。在分布式的环境中,情况稍微复杂一些。开始的时候作业的类必须打包成一个作业JAR文件并发送给集群。Hadoop通过搜索驱动程序的类路径自动找到该作业JAR文件,该类路径包含JonfConf或Job上的setJarByClass()方法中设置的类。另一种方法,如果你想通过文件路径设置一个指定的JAR文件,可以使用setJar()方法。JAR文件路径可以是本地的,也可以是一个HDFS文件路径。通过使用像Ant或Maven的构建工具可以方便地创建作业的JAR文件。当给定范例所示的POM时,下面的Maven命令将在包含所有已编译的类的工程目录中创建一个名为hadoop-example.jar的JAR文件:

    04

    如何部署 Hadoop 集群

    Hadoop是一个由Apache基金会所开发的分布式系统基础架构。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS。HDFS有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上;而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。HDFS放宽了(relax)POSIX的要求,可以以流的形式访问(streaming access)文件系统中的数据。Hadoop的框架最核心的设计就是:HDFS和MapReduce。HDFS为海量的数据提供了存储,而MapReduce则为海量的数据提供了计算。

    012

    Flink RocksDB State Backend:when and how

    流处理应用程序通常是有状态的,“记住”已处理事件的信息,并使用它来影响进一步的事件处理。在Flink中,记忆的信息(即状态)被本地存储在配置的状态后端中。为了防止发生故障时丢失数据,状态后端会定期将其内容快照保存到预先配置的持久性存储中。该RocksDB[1]状态后端(即RocksDBStateBackend)是Flink中的三个内置状态后端之一。这篇博客文章将指导您了解使用RocksDB管理应用程序状态的好处,解释何时以及如何使用它,以及清除一些常见的误解。话虽如此,这不是一篇说明RocksDB如何深入工作或如何进行高级故障排除和性能调整的博客文章;如果您需要任何有关这些主题的帮助,可以联系Flink用户邮件列表[2]。

    03
    领券