首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    图像识别的原理、过程、应用前景,精华篇!

    图像识别技术是信息时代的一门重要的技术,其产生目的是为了让计算机代替人类去处理大量的物理信息。随着计算机技术的发展,人类对图像识别技术的认识越来越深刻。图像识别技术的过程分为信息的获取、预处理、特征抽取和选择、分类器设计和分类决策。简单分析了图像识别技术的引入、其技术原理以及模式识别等,之后介绍了神经网络的图像识别技术和非线性降维的图像识别技术及图像识别技术的应用。从中可以总结出图像处理技术的应用广泛,人类的生活将无法离开图像识别技术,研究图像识别技术具有重大意义。 1、图像识别技术的引入 图像识别是人

    010

    专访腾讯“优图团队”:腾讯内部的核心技术团队是这样服务产品团队的

    一个偶然的机会,36氪和“优图团队”进行了接触,他们是腾讯内部专注于图像处理、模式识别、机器学习、数据挖掘等领域的核心技术团队,由毕业自清华、北大、中科院、上海交大等院校的博士、硕士组成。 腾讯优图团队隶属于腾讯社交网络事业群,基于整个腾讯的社交网络平台,为QQ空间、腾讯地图、腾讯游戏、等50多款产品提供图像技术支持。每天QQ空间有2亿上传图片的活跃用户,团队单日最多处理照片达6亿张,累计已经分析处理了超过300亿张照片 36氪:作为纯粹的技术团队,怎么平衡技术和产品之间的矛盾? 我们首先会对一些关键技术,

    06

    深度学习应用系统分析:应用组合和形态矩阵找到正确路径

    【新智元导读】本文收录了arXiv.org上关于深度学习的一些最新的研究论文,列出了这些文章的内容,包括“深度学习八大灵感应用”、“深度学习用例”、“科学与工程中的深度学习应用”、“深度学习应用程序的下一次浪潮”等。针对这些文章缺乏系统方法的问题,提出了具体的组合矩阵、形态矩阵解决方案,并给出了预测示例。 隐藏的潜力 对深度学习研究和应用的兴趣从未这么热过。几乎每天都可以在arXiv.org找到无数的新研究论文。这些论文为我们描述了新的方法,人工神经网络可以靠这些方法应用于我们日常生活的各个领域。深度学习最

    010
    领券