俗称光学字符识别,英文全称是Optical Character Recognition(简称OCR),它是利用光学技术和计算机技术把印刷体或手写体文本进行读取识别,转化成计算机和人都能够识读的格式。此间OCR技术是关键一环。OCR技术中,印刷体的文本识别是最成熟的一个,因其开展最早。早在1929年就被欧美国家利用来处理大量的报刊杂志、文件和单据报表等。经过40多年的发展和完善,文本识别技术更加成熟,逐步实现了信息处理的“电子化”。
手写汉字的一些特点: ①基本笔画变化。印刷体汉字的笔画基本上是横平竖直,折笔(乛、乙、く)的拐角大都是尖锐的钝角、锐角或直角,因而折笔基本上可以看做是由折线段所组成。我国手写汉字的笔画大都不具备上述的特点:横不平、竖不直,直笔画变弯,折笔的拐角变为圆弧,等等,例如,“品”字的三个“口”变成三个圆圈,“阝”变成“”;有时把较短的笔画变为“点”,有时则在起笔或折笔的拐角处增加额外的“笔锋”等。 ②笔画该连的不连,不该连的相连,这种情况十分普遍。它不是由于干扰等客观原因而产生,主要是由于书写者的习惯而造成的。应,笔画的长短及部件的大小也发生变化。以图4.l(a)的钢笔字帖为例,“担、打、报、择”几个字的偏旁“扌”,其竖笔长短不一,“阳、队、陈、陶”的部首“阝”也大小不同,它们在整字中的位置就有差异。方块汉字字形是一种艺术,书写时要求笔画及部件的形态和相互关系,尽量彼此协调,使整字字形结构匀称美观,因此上述笔画与部件的大小、位置变化,客观上是不可避免的。此外,由于书写者文化水平、习惯等的不同,他们所写的字差别就更大。样本属于比较工整的字样,但字形变化仍相当明显。这说明即使是同一个人写的字也有一定的差异。笔画长短、部首大小及位置等的变化,使我们难以仿照印刷体汉字识别的办法事先确定它们的位置,按规定区域提取笔画或部首特征。 a)一种钢笔字帖的字样;
文字是信息的重要载体之一。通过书写、印刷、电子设备等方式,文字可以被记录下来并传递给他人。文字也是语言的重要组成部分,人们可以通过文字来表达自己的思想、感情和意图。在信息化时代,文字仍然是最基本、最重要的信息传递方式之一,也有着其不可替代的优势,如:简短明了、方便快捷、易于编辑、可归纳整理等。
前言 文字识别是计算机视觉研究领域的分支之一,归属于模式识别和人工智能,是计算机科学的重要组成部分 本文将以上图为主要线索,简要阐述在文字识别领域中的各个组成部分。 一 ,文字识别简介 计算机文字识别,俗称光学字符识别,英文全称是Optical Character Recognition(简称OCR),它是利用光学技术和计算机技术把印在或写在纸上的文字读取出来,并转换成一种计算机能够接受、人又可以理解的格式。OCR技术是实现文字高速录入的一项关键技术。 在OCR技术中,印刷体文字识别是开展最早,技术
量子位已获马少平教授授权转载 原发新浪微博:@马少平THU,点击左下角“阅读原文”可直达原文 马少平,清华大学计算机科学与技术系教授 研究领域:智能信息处理, 信息检索 讲授课程:人工智能导论、人工智能等 马少平还是中国人工智能学会常务理事 最近,有不同人问了我同一个问题:是什么渊源,走上了人工智能这条路。说实话,别说是人工智能,就连进入计算机行业,都完全是阴差阳错的结果,并不是我的主动选择。 1977年,文革结束后,突然传来消息,要回复高考了,当时我还在读高中,对于怎么填报志愿,一概不知。班主任老师的意见
随着信息碎片化时代的来临,人们每天不得不被迫接受处理生活各种场景中无限砸向面前的信息,被各种终端图像、文字数据搞得力倦神疲。而针对大数据的处理,人工能力显然已经无法应对,人工智能与机器学习或将成为劳动力转移和工业革命的切口。过去一年来,研究人员和开发者在人工智能各领域取得多个重要突破。北京旷视科技旗下的 Megvii Image++团队近日刷新了2015 ICDAR 鲁棒阅读竞赛(Robust Reading Competition)和离线手写体汉字单字识别(公开测试集)双项赛事记录,实现了图像识别技术的又
参与 | 鸽子,Shawn 今日,苹果再次更新其博客,这次的内容主打手写识别,而且是对汉字的手写识别。是不是挺好奇的,先来看看这篇论文的简介: 对由30000字符构成的大型汉字字符库进行实时手写汉字识别 随着智能手机、平板电脑和可穿戴设备(如智能手表)的普及,手写识别技术变得愈发重要。但是如果想在这些移动设备上实现汉字手写识别,就必须解决一些特有的问题,因为汉字识别需要有巨大的符号数据库。本论文阐述了我们如何解决这些问题,在iPhone、iPad和Apple Watch(手写模式)上实现了手写汉字的实
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Gavin__Zhou/article/details/47374707
昨晚,Nature子刊 Machine Intelligence发布了八月份最新接收论文,共 4 篇。其中两篇来自国内,一篇是清华生命学院龚海鹏和澳大利亚格里菲斯大学周耀旗等人用神经网络进行蛋白质结构预测方面的工作;另一篇则是中科院自动化所余山团队对深度神经网络在连续学习方面的改进工作。
本文介绍了一种基于keras的文字识别模型,包括数据集准备、模型构建和训练等方面。通过在GTX1080上运行,最终在测试集上获得了91%的准确率,基本可以识别大部分库里的汉字。
在本文中,我们用自然图像中包含的文字创建了一个大型数据集,名为Chinese Text in the Wild(CTW)。该数据集包含32,285张带有1,018,402个中文字符的图像,远远超出了之前的数据集,这些图片来自腾讯街景,从中国数十个不同的城市获取,没有任何特殊目的。由于其多样性和复杂性,该数据库存在极大的挑战性。它包含平面文本,凸起文本,城市文本,农村文本,低亮度文本,远处文本,部分遮挡文本等。对于每个图像,我们注释其所有中文。对每一个中文字符,我们注释它的底层字符,边界框和6个属性,以指示它是否被遮挡,复杂背景,扭曲,3D文字,艺术字和手写体。
原文刊载于 明略数据(Minglamp_BigData) 量子位 | QbitAI 已获授权编辑转载 这是7月下旬,马少平老师在明略数据内部做的一个分享,基于此前马老师随笔《人工智能能做什么?》中的一些思考进行了扩展。 AlphaGo的出现,让很多人对人工智能产生了不切合实际的幻想,究竟人工智能能做什么?1个半小时的分享,整理成如下内容,包含以下几个部分: ● 人工智能发展历史 ● 人工智能典型应用 ● 当前行业中人工智能的应用情况 ● 如何指导科研工作 作者:
注:此篇内容主要是综合整理了光学字符识别 和OCR技术系列之一】字符识别技术总览,详情见文末参考文献
由于最近在接触一些OCR的工作,所以本期《晓说AI》和大家分享一下我的一些总结,先从基本的概念讲起。如有错误,还请指正,谢你3千遍。如有疑问,欢迎留言,我会第一时间答复。
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 。 。 。 。 。 。 。 全部 代码 ,视频,数据集 获取方式: 关注微信公众号 datayx 然后回复 唐宇迪 即可获取。 机器学习算法AI大数据技术 搜索公众号添加: datanlp 长按图片,识别二维码 ---- 阅读过本文的人还看了以下文章: TensorFlow 2.0深度学习案例实战 基于40万表格数据集TableBank,用MaskRCNN做表格检测 《基于深度学习的自然
随着互联网的飞速发展,图片成为信息传播的重要媒介,图片中的文本识别与检测技术也一度成为学界业界的研究热点,应用在诸如证件照识别、信息采集、书籍电子化等领域。
越发达的地区,人均保有车辆越多,加上我国的“互联网+”提出,移动业务越来越兴旺发达,智能终端(智能手机及平板电脑)及移动通信(4G)发展迅速,人们用手机的频率比用电脑的多,灵活便捷,随处可用,因此,手机成为生活中必不可少的工具。“互联网+”迫使得移动端APP应用火爆,如今警务方面的办事办案,都离不开移动端的支持,收费也是,没有PDA,连锁就不完美。
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 实现思路 数据处理 原始数据来源于 https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/static/wiki_crop.tar 原始数据集包含的图片数量很多,我从中筛选了大约10000张图片(筛选条件为:由OpenCV识别出的face数目为1、性别已知、男女各约5000张) 图片尺寸统一为 100x100,文件名格式统一为 编号-年龄-性别.png,其中性别1
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 所有论文 包括已经录制完成和之后将要介绍的论文。选取的原则是10年内深度学习里有影响力文章(必读文章),或者近期比较有意思的文章。当然这十年里重要的工作太多了,不可能一一过一遍。在选取的时候我会偏向一些之前 直播课 中没讲到过的。 总论文数 67,录制完成数 32 全部 代码 ,预训练模型 获取方式: 关注微信公众号 datayx 然后回复 论文 即可获取。 机器学习算法AI大数据技术 搜索公众号添加: d
车牌的检测和识别的应用非常广泛,比如交通违章车牌追踪,小区或地下车库门禁。在对车牌识别和检测的过程中,因为车牌往往是规整的矩形,长宽比相对固定,色调纹理相对固定,常用的方法有:基于形状、基于色调、基于纹理、基于文字特征等方法,近年来随着深度学习的发展也会使用目标检测的一些深度学习方法。该项目主要的流程如下图所示:
最近入坑研究OCR,看了比较多关于OCR的资料,对OCR的前世今生也有了一个比较清晰的了解。所以想写一篇关于OCR技术的综述,对OCR相关的知识点都好好总结一遍,以加深个人理解。 什么是OCR? OCR英文全称是Optical Character Recognition,中文叫做光学字符识别。它是利用光学技术和计算机技术把印在或写在纸上的文字读取出来,并转换成一种计算机能够接受、人又可以理解的格式。文字识别是计算机视觉研究领域的分支之一,而且这个课题已经是比较成熟了,并且在商业中已经有很多落地项目了。比如汉
本项目是利用YOLOv4进行口罩佩戴检测,使用PyTorch实现。虽然现在国内疫情基本得到有效遏制,但防控仍不可过于松懈,在一些公共场合佩戴口罩还是必不可少的。基于此,自己做了该项目,后续打算继续改进,争取将其运行到边缘设备上。希望本项目能给疫情常态化防控出一份力,也希望真正的新年早日到来。
在3月18日,由中国图象图形协会(CSIG)主办,合合信息、CSIG文档图像分析与识别专业委员会联合承办的“CSIG图像图形企业行”活动将正式举办,特邀来自上海交大、厦门大学、复旦、中科大的顶尖学府的学者与合合信息技术团队一道,以直播的形式分享文档处理实践经验及NLP发展趋势,探讨ChatGPT与文档处理未来。
手机拍照识别车牌是指通过计算机视觉、图像处理与模式识别等方法从车辆图像中提取车牌字符信息,从而确定车辆身份的技术。手机拍照识别车牌分为车牌定位、字符分割、字符识别三大部分。
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 基于Flask RESTful api的图像特征检索方案,api传入url/base64即可在毫秒内返回数据库匹配结果,主要用于图像去重,后续拓展使用范围。 1. 项目说明: 本项目基于开源框架PyRetri进行二次开发,同时结合facebook开源项目Facebook AI Similarity Search,设计出基于Flask的RESTful api接口,目的是为了解决以下几个场景问题: 1)本地已经存储大规模
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 核酸检测报告已经是疫情这些年很多人出行必备的材料,而且很多机关单位、政府部门都需要检查核酸报告才能让相关的人员进出场所。如果有一个模型能够快速的识别并提取核酸报告里的关键信息,则能很大程度上提升那些需要提交核酸报告的OA流程审核效率,提升企事业的服务效率。 1.标注数据 标注方法和标注目标检测的数据一样,一个框加一个标签 pip install labelImg ==1.8.6 安装完毕后,键入命令: labelImg
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 在自然语言处理领域中,预训练语言模型(Pretrained Language Models)已成为非常重要的基础技术,本仓库主要收集目前网上公开的一些高质量中文预训练模型。 NLU系列 BERT RoBERTa ALBERT NEZHA XLNET MacBERT WoBERT ELECTRA ZEN ERNIE RoFormer StructBERT Lattice-BERT Mengzi-BER
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 安装依赖 pip install requests 使用方法 浏览器打开:https://order.jd.com/center/list.action 没登录就登录 F12 控制台 console 栏输入 console.log(_JdJrTdRiskFpInfo, _JdEid) 参数依次对应: _JdJrTdRiskFpInfo => self._JdJrTdRiskFpInfo _JdEid => self.
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 项目描述 本项目是一个带有超级详细中文注释的基于GPT2模型的新闻标题生成项目。 本项目参考了GPT2-Chinese、GPT2-chitchat、CDial-GPT、GPT2等多个GPT2开源项目,并根据自己的理解,将代码进行重构,添加详细注释,希望可以帮助到有需要的人。 本项目使用HuggingFace的transformers实现GPT2模型代码编写、训练及测试。 本项目通过Flask框架搭建了一个Web服务,将新
安妮 编译自 苹果机器学习博客 量子位 出品 | 公众号 QbitAI 在手机、平板和可穿戴设备不断普及的今天,手写识别比以往任何时候都重要。但这并非易事,拿汉字来说,让移动设备识别大量手写汉字字符还是个挑战。 今天,苹果机器学习博客发表文章《Real-Time Recognition of Handwritten Chinese Characters Spanning a Large Inventory of 30,000 Characters》,介绍了苹果如何在iPhone、iPad和Apple Wat
最近入坑研究OCR,看了比较多关于OCR的资料,对OCR的前世今生也有了一个比较清晰的了解。所以想写一篇关于OCR技术的综述,对OCR相关的知识点都好好总结一遍,以加深个人理解。
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 之前只用过单线程处理,加载模型进行测试,运行时间上也可以接受。但是现在需要处理比较大量的数据,如果进行线性处理,可能测试一次就花10个小时,而且还不知道结果怎么样,所以多线程就必须使用上了。有关线程部分主要参考:https://junyiseo.com/python/211.html 1 多线程 多线程类似于同时执行多个不同程序,线程在执行过程中与进程还是有区别的。每个独立的进程有一个程序运行的入口、顺序执行序列和程
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx DBnet文本检测网络加入多分类,可以实现模型很小又能够区分类别的功能,然后可以根据检测框的标签快速提取目标字段,在端侧部署的话就能达到非常高的精度和效率。 1.标注数据 标注方法和标注目标检测的数据一样,一个框加一个标签 pip install labelImg ==1.8.6 安装完毕后,键入命令: labelImg 或者下载工具 labelImg.exe链接:https://pan.baidu.com/s/14
朋友小君是一家创业公司老板,最近这段时间总是抱怨自己公司每天要处理的文件又多又杂,员工工作效率因此被拖慢了不少。
因为我这里只是判断 【人没有带安全帽】、【人有带安全帽】、【人体】 3个类别 ,基于 data/coco128.yaml 文件,创建自己的数据集配置文件 custom_data.yaml
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx nerpy实现了BertSoftmax、BertCrf、BertSpan等多种命名实体识别模型,并在标准数据集上比较了各模型的效果。 https://github.com/shibing624/nerpy Evaluation 说明: 结果值均使用F1 结果均只用该数据集的train训练,在test上评估得到的表现,没用外部数据 shibing624/bert4ner-base-chinese模型达到同级别参数量SOT
为提升内蒙古地区教师的教学水平,内蒙古中部片区国家统编教材教师学科培训已开展数月。6月2日,2000余位内蒙古教师通过腾讯教育与首都师范大学“双优云桥”项目共同打造的“双优云桥-首师优字”平台,接受了“双优云桥-首师优字”中小学汉字识写教学解决方案的培训,提升了国家通用语言文字的教育教学水平。 据了解,首都师范大学“双优云桥-首师优字”中小学汉字识写教学解决方案依托于该校在书法教育领域积淀的资源,以“字理识字”与“六法”理论为基础,以匹配语文部编版教材的“硬笔、毛笔、粉笔”全套课程资源为核心,结合腾讯教育“
中国软件行业协会智能应用服务分会揭牌仪式 左起:李璐、陈宝国、蒋涛、邱钦伦 2018年4月3日,中国软件行业协会智能应用服务分会成立仪式在北京隆重举行,众多来自人工智能产学研各界的专家、代表共同见证了这一历史时刻。 中国软件行业协会常务副秘书长陈宝国、副秘书长李璐、CSDN创始人董事长蒋涛、国软教育研究院执行院长邱钦伦共同为中国软件行业协会智能应用服务分会揭牌。 ▌成立智能应用服务分会,提升中国新一代人工智能制高点 中国软件行业协会常务副秘书长陈宝国在致辞中表示:“我们国家将新一代人工智能发展列为重要规划
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 目前支持蓝色标准车牌,黄色标准车牌,小型新能源车牌的车牌生成。 实际的车牌示例 实际的大型新能源车牌示例 实际的小型新能源车牌示例 生成的蓝色底牌车牌示例 生成的小型新能源车牌示例 全部代码 获取方式: 关注微信公众号 datayx 然后回复 车牌生成 即可获取。 程序结构说明 license_plate_elements.py: 车牌号元素,其中定义: 车牌号中,不同车牌位的取值范围; 不
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 精度与速度远超 YOLOv5 和 YOLOX 的新框架 YOLOv6关键技术介绍 YOLOv6 主要在 Backbone、Neck、Head 以及训练策略等方面进行了诸多的改进: 我们统一设计了更高效的 Backbone 和 Neck :受到硬件感知神经网络设计思想的启发,基于 RepVGG style[4] 设计了可重参数化、更高效的骨干网络 EfficientRep Backbone 和 Rep-PAN Neck。
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 在构建模型时,调参是极为重要的一个步骤,因为只有选择最佳的参数才能构建一个最优的模型。但是应该如何确定参数的值呢?所以这里记录一下选择参数的方法,以便后期复习以及分享。 (除了贝叶斯优化等方法)其它简单的验证有两种方法:1、通过经常使用某个模型的经验和高超的数学知识。2、通过交叉验证的方法,逐个来验证。 很显然我是属于后者所以我需要在这里记录一下 sklearn 的 cross_val_score: 我使用是cross_
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 上采样与上池化 图示理解,使用三张图进行说明: 图(a)表示UnPooling的过程,特点是在Maxpooling的时候保留最大值的位置信息,之后在unPooling阶段使用该信息扩充Feature Map,除最大值位置以外,其余补0。 Unpooling是在CNN中常用的来表示max pooling的逆操作。 鉴于max pooling不可逆,因此使用近似的方式来反转得到max pooling操作之前的原始情
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 交通标志本身种类众多,大小不定,并且在交通复杂的十字路口场景下,由于光照、天气等因素的影响,使其被精确检测变得更加困难。提高上述场景下交通标志检测准确度,将有助于降低十字路口交通事故发生的概率。 提供真实场景的道路图片,部分图片给出了交通标志的标注结果,所有交通标志共计 5 个类别,分别为红灯、直行标志、向左转弯标志、禁止驶入和禁止临时停车。 数据示例如下: 初赛1/177,复赛1/12 全部 代码 ,方案详情 获取
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 最近遇到一个问题,如何读取仪表中的指针指向的刻度 解决方法有多种,比如,方案一:模板匹配+边缘检测+霍夫直线检测,方案二:神将网络(CNN)目标定位等, 其中CNN就有点麻烦了,需要一定数量的训练样本,太麻烦,而方案一太普通,最后我采用了方案三, 方案三:模板匹配+k-means+直线拟合 具体做法如下: 首先说一下模板匹配,它是OpenCV自带的一个算法,可以根据一个模板图到目标图上去寻找对应位置,如果模板找
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 期研究了一下以图搜图这个炫酷的东西。百度和谷歌都有提供以图搜图的功能,有兴趣可以找一下。当然,不是很深入。深入的话,得运用到深度学习这货。Python深度学习当然不在话下。 这个功能最核心的东西就是怎么让电脑识别图片。 这个问题也是困扰了我,在偶然的机会,看到哈希感知算法。这个分两种,一种是基本的均值哈希感知算法(dHash),一种是余弦变换哈希感知算法(pHash)。dHash是我自己命名的,为了和pHash区分。
众所周知,当今车牌信息采集环节中,过去传统的手工录入的方式在面对庞大的数量时显得力不从心,如果能直接通过APP采集车牌信息并完成录入则会给工作人员和客户带来巨大的便利。当下,汽车是很多人出行必备的交通工具,路面上行驶的车辆越来越多,不断方便人们出行,但与此同时,车辆的管理难度也在不断的加强——车辆管理、车辆查询、车辆收费等等。与日俱增的车总量与不断压缩的工作人员数量形成了一个巨大的矛盾。
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 中文微博情感分类语料库 "情感分析"是我本科的毕业设计, 也是我入门并爱上NLP的项目hhh, 当时网上相关语料库的质量都太低了, 索性就自己写了个爬虫, 一边标注一边爬, 现在就把它发出来供大家交流。因为是自己的项目,所以标注是相当认真的,还请了朋友帮忙校验,过滤掉了广告/太短/太长/表意不明等语料,语料质量是绝对可以保证的 带情感标注的微博语料数量: 10000(train.txt)+500(test.txt)
移动互联网时代的开启使得图片的获取与分享越来越容易,图片已经成为人们交互的重要媒介。如何根据图像的视觉内容为图像赋予一个语义类别(例如,教室、街道等)是图像场景分类的目标,也是图像检索、图像内容分析和目标识别等问题的基础。但由于图片的尺度、角度、光照等因素的多样性以及场景定义的复杂性,场景分类一直是计算机视觉中的一个挑战性问题。
向AI转型的程序员都关注了这个号👇👇👇 火爆全网的小游戏羊了个羊到底藏了什么套路?几乎所有人上班下班都在玩,可通关率据说还不到1%。 其实这个游戏和你的策略或技术没啥关系,完全是算法和运气在折磨你。十年前我们玩空当接龙的时候,所有牌都是明牌,理论上可以算出最优解;但羊了个羊不一样,策略再好也不能稳赢,因为你根本不知道一张牌底下藏着什么牌,这和斗地主还不一样,斗地主的牌堆是固定的,但游戏里的牌堆可以被算法改变。 知乎上有人算出了通关概率,游戏一共有14种图案,即使按照逐渐消层的最优解,底下的牌也有200多万
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 此项目可监控近千家中国企业的官方网站的新闻动态,如有更新,系统能在最短2分钟之内通过邮件发送更新的标题和链接。更新的信息流也可通过浏览器查看。监控的公司和站点可以添加删除。 原理:定期抓取网站html, 使用difflib比对新旧页面源码,发现增加的部分,提取url和text,过滤筛选,保存MySQL数据库。定期把更新的url和text,通过邮件发送给订阅者。 全部代码 获取方式: 关注微信公众号 datayx 然
领取专属 10元无门槛券
手把手带您无忧上云