欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 本篇概览 本篇是《Java版人脸跟踪三部曲》系列的第二篇,前文体验了人脸跟踪的效果,想要编码实现这样的效果,咱们需要做好设计工作,也就是本篇的任务 本篇主要包含以下内容: 核心逻辑 重要知识点:HSV、HUE 重要知识点:反向投影 重要知识点:CamShift 重要知识点:JavaCV的API支持 如何开局? 前文的完整功能分析 异常处理 期待下一篇的实战(虎年
自动色阶、自动对比度以及直方图均衡这三个算法虽然很普通,也很简单,但是在实际应用中有着非常高的使用率,特别是在修图中,很多设计师打开一幅图,首先的的操作就是Shift+Ctrl+L(自动色阶)。在原理实现上,他们都属于基于直方图统计方面的算法,执行效率都非常之高。我在调整图像- 自动对比度、自动色阶算法一文中对他们的过程进行了详细的分析和解读,这里不在详述。
欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 《Java版人脸跟踪三部曲》全文链接 《极速体验》 《开发设计》 《编码实战》 本篇概览 作为《Java版人脸跟踪三部曲》系列的终篇,本文会与大家一起写出完整的人脸跟踪应用代码 前文《开发设计》中,已经对人脸跟踪的核心技术、应用主流程、异常处理等方方面面做了详细设计,建议您简单回顾一下 接下来,自顶向下,先整体设计好主框架和关键类 程序主框架和关键类 听欣宸唠叨
图像的直方图用来表征该图像像素值的分布情况。用一定数目的小区间(bin)来指定表征像素值的范围,每个小区间会得到落入该小区间表示范围的像素数目。
🚀🚀首先,我们先看一下这段代码,这是我之前写来读取excel文件中xx大学在各个类别中的获奖情况,并保存在一个txt文件里面,代码逻辑比较简单,理解起来应该不难。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
下述解释援引自理查德·斯泽利斯基(Richard Szeliski)的<<计算机视觉算法和应用>>一书。
据市场调研预测,未来几年内,基于CMOS图像传感器的影像产品将达到50%以上,也就是说,到时CMOS 图像传感器将取代CCD而成为市场的主流。可见,CMOS摄像机的市场前景非常广阔。这是因为CMOS图像传感器件具有两大优点:一是价格比CCD 器件低;二是其芯片的结构可方便地与其它硅基元器件集成,从而可有效地降低整个系统的成本。尽管过去CMOS图像传感器的图像质量比CCD差且分辨率低,然而经过迅速改进,已不断逼近CCD的技术水平,目前这种传感器件已广泛应用于对分辨率要求较低的数字相机、电子玩具、电视会议和保安系统的摄像结构中。
美团履约平台技术部在因果推断领域持续的探索和实践中,自研了一系列分布式的工具。本文重点介绍了分布式因果树算法的实现,并系统地阐述如何设计实现一种分布式因果树算法,以及因果效应评估方面qini_curve/qini_score的不足与应对技巧。希望能为从事因果推断相关工作的同学们提供一些启发或帮助。
https://haifengl.github.io/ https://github.com/haifengl/smile
图像灰度分析是图像分析中最基本的内容,它使用各种图像灰度分析工具,提取图像或ROI区域内的灰度特征信息。基于对图像灰度的分析测量,可以实现最基本的机器视觉检测系统,如目标存在性检测系统等。
对于同比,环比的数据对比在人力资源的数据分析中,一般在人员流动,人员离职还有人效数据分析中出现的比较多。特别是在人员流动的数据分析中,因为人员流动的数据分析主要是通过对历史数据的分析,来预判明年人员入离职的时间,从而提前为招聘培训做好准备,所以在流动模块就需要来进行数据的对比。
OpenCV中直方图反向投影算法详解与实现 一:直方图交叉 OpenCV中直方图反向投影算法实现来自一篇论文《Indexing Via Color Histograms》其作者有两位、是Michael
文章和代码以及样例图片等相关资源,已经归档至【Github仓库:digital-image-processing-matlab】或者公众号【AIShareLab】回复 数字图像处理 也可获取。 文章目录 图像显示 图像文件输入/输出 图像算术 几何变换 图像匹配 像素值及统计 图像分析(包括分割、描述和识别) 图像压缩 图像增强 图像噪声 线性和非线性空间滤波 线性二维滤波器设计 图像去模糊(复原) 图像变换 小波 领域和块处理 形态学操作(亮度和二值图像) 形态学操作(二值图像) 结构元素(STR
点击上方“芋道源码”,选择“设为星标” 管她前浪,还是后浪? 能浪的浪,才是好浪! 每天 10:33 更新文章,每天掉亿点点头发... 源码精品专栏 原创 | Java 2021 超神之路,很肝~ 中文详细注释的开源项目 RPC 框架 Dubbo 源码解析 网络应用框架 Netty 源码解析 消息中间件 RocketMQ 源码解析 数据库中间件 Sharding-JDBC 和 MyCAT 源码解析 作业调度中间件 Elastic-Job 源码解析 分布式事务中间件 TCC-Transaction
上一篇文章MAT入门到精通(一)介绍了MAT的使用场景和基本概念,这篇文章开始介绍MAT的基本功能,后面还有两篇,一篇是MAT的高级功能,另一篇是MAT实战案例分析。
直方图统计在图像增强和目标检测领域有重要应用,比如直方图均衡,梯度直方图。直方图的不同种类和统计方法请见之前的文章。本章就是用FPGA来进行直方图的计算,并且利用FPGA的特性对计算过程进行加速。安排如下:
目前,人脸识别的使用率正在不断上升,随之而来关于面部识别道德问题的争论也愈发激烈。从机场到社交媒体,面部识别的应用无处不在。因此,想让自己的脸不被扫描几乎是不可能的。
构建高性能的Java应用过程中,必然会遇到各种各样的问题,像CPU飙高、内存泄漏、应用奔溃,以及其他疑难杂症,这时可以使用Serviceability Agent(SA)。SA是JDK提供的一个强大的调试工具集,适用于语言层和虚拟机层,支持调试运行着的Java进程、core文件和虚拟机crash之后的dump文件。
直方图均衡化是图像处理领域中利用图像直方图对对比度进行调整的方法。通过这种方法,亮度可以更好地在直方图上分布。这样就可以用于增强局部的对比度而不影响整体的对比度,直方图均衡化通过有效地扩展常用的亮度来实现这种功能。
ImageJ中图像二值化方法介绍 概述 二值图像分析在对象识别与模式匹配中有重要作用,同时也在机器人视觉中也是图像处理的关键步骤,选择不同图像二值化方法得到的结果也不尽相同。本文介绍超过十种以上的基于
上一篇文章概括的介绍了JVM Heap Dump文件生成的方式以及内存分析工具MAT的概要功能,今天讲解如何使用MAT的Histogram和Dominator Tree两个视图,定位到内存溢出源。
本文是Tableau的案例,为B站视频的笔记,B站视频 参考:https://www.bilibili.com/video/BV1E4411B7ef 参考:https://blog.csdn.net/lianjiabin/category_9826951.html 数据下载地址为:https://download.csdn.net/download/m0_38139250/87346415
在阅读《Java性能调优指南》一书的最后,书中介绍了Serviceability Agent,并给出了一些排查问题的示例,我感觉看书不够深刻,因此自己在macOs上进行了一些实验。我的操作系统版本是:macOS Sierra 10.12.6,我的JDK版本是1.8.0_152。
图像直方图用作数字图像中色调分布的图形表示。它绘制了每个色调值的像素数。通过查看特定图像的直方图,观看者将能够一目了然地判断整个色调分布。
这两种方式的实质是对感兴趣的图像区域进行展宽,对不感兴趣的背景区域进行压缩,从而达到图像增强的效果
灰度直方图是关于灰度级分布的函数,是对图像中灰度级分布的统计。灰度直方图是将数字图像中的所有像素,按照灰度值的大小,统计其出现的频率。灰度直方图是灰度级的函数,它表示图像中具有某种灰度级的像素的个数,反映了图像中某种灰度出现的频率。
对普通人而言,识别任意两张图片是否相似是件很容易的事儿。但是从计算机的角度来识别的话,需要先识别出图像的特征,然后才能进行比对。在图像识别中,颜色特征是最为常见的。每张图像都可以转化成颜色分布直方图,如果两张图片的直方图很接近,就可以认为它们很相似。这有点类似于判断文本的相似程度。
本文是在假定读者了解了直方图是什么,直方图如何进行添加维护的前提下,围绕直方图与索引的对比、何时应该添加直方图,及直方图如何帮助优化器选择更优的执行计划这几个方面来介绍直方图。 对直方图不太了解的小伙伴可参考GreatSQL社区的另一篇文章 4.直方图介绍和使用|MySQL索引学习
现有的图像增强数据集都是通过合成或者调整曝光时间得到的,但存在两个问题:①如何确保预先训练的网络可以用于不同设备、不同场景和不同照明条件下收集的图像,而不是构建新的训练数据集。②如何确定用于监督的正常光图像是最好的,因为相对于一张低光照图像,我们可以得到很多的正常光图像。 为了解决上述问题,本文基于信息熵理论和Retinex模型,提出了第一篇基于深度学习的完全自监督做图像增强的论文,本文提出的网络不用成对的数据集,只需要低光照图像(甚至只要一张低光照图像),训练时间为分钟级(minute-level),可以取得实时的性能。该网络将低光照图像分解为反射部分和照度部分,其中反射部分即为增强后的结果。 本文的理论来源:根据信息熵理论,直方图均匀分布的图像熵最大,信息量最大。基于这一点,本文提出了一个假设,即增强后图像最大通道的直方图分布应与直方图均衡化后的低光照图像最大通道的直方图分布一致。有了这一假设,损失函数的设计就不需要正常光图像,不仅保留了增强后图像的真实性,而且包含充足的信息。作者认为,该方法对低亮度图像的获取没有任何依赖,且训练过程完全self-supervised,因此本文提出的方法具有良好的泛化能力,即使预训练的网络对于新的环境结果不是很好,也可以通过重新训练或者微调的方式改善。 基于最大熵的Retinex模型,其理论来源如下,根据Retinex理论,图像可以分解成反射和照度部分,即
在微服务架构和云原生应用日益普及的今天,监控和度量已成为确保系统稳定性和性能的关键环节。Micrometer,作为一款为Java应用量身打造的度量指标库,以其广泛的后端支持和标准化的API,简化了度量数据的收集和导出过程。本文旨在快速介绍Micrometer的核心概念、Java开发者在使用过程中可能遇到的常见问题与易错点,并提供解决方案,辅以简洁的代码示例,助你一分钟内掌握Micrometer的精髓。
对于原始对比度较低的图像,我们可以提高对比度来增强图像的辨识度,改善图像的视觉效果,转换为更适合人或者机器处理的形式,去除无用的信息,提高使用价值。典型的比如CT图像增强,去雾去雨,静脉增强等算法。
image.png 相信大部分同学曾经都学习过快速排序、Huffman、KMP、Dijkstra等经典算法,初次学习时我们惊叹于算法的巧妙,同时被设计者的智慧所折服。于是,我们仔细研读算法的每一步,甚至去证明算法的正确性,或者是去尝试优雅地实现这些算法。总之,我们会花费很大的时间精力去理解这些智慧的结晶。 然而,现在对于这些经典的算法你仍然了然于胸吗?就算现在你仍然记得这些算法的步骤,你敢确保一年后、十年后自己不会忘记?我想没有多少人敢保证吧。 我们当然希望自己掌握一个算法后,就永远不会忘记,最好还能举一反
为了将一张灰度图变成一张二值图,我们需要设定一个阈值。我们希望找到一种自动方法,对于各种不同情况(例如:不同的光照情况,或者,不同的物体表面反射性质),它都能够自适应地进行处理。对于这个问题,一种处理方式是:只分析图像中灰度值的情况,而不去管图像单元的位置。
ComponentOne Enterprise 是一款专注于企业应用 .NET开发的 Visual Studio 组件集,包含 300多种 .NET控件,支持 WinForm,WPF,UWP,ASP.NET MVC 等七个 .NET开发平台,具备表格数据管理、数据可视化、报表和文档、日程安排、输入和编辑、导航和布局、系统提升工具等七大功能,满足企业应用开发的全部需求。
前言 论文链接:Combining Sketch and Tone for Pencil Drawing Production Matlab版本的代码,目前找到有两个: 1、https://github.com/fumin/pencil 2、https://github.com/candycat1992/PencilDrawing 效果看起来第二个要好,而且写的代码非常简洁。 我实现了Scala的版本(有一小部分用到了python),基于第一个Matlab版本的代码: https://github.com
内联类(inline classes)的目标是让 Java 程序更好地适应现代硬件。为了实现这一目标,需要重新审视 Java 平台的一个非常基础的组成部分,即 Java 数据值的模型。
STATA是一款功能强大的数据分析和统计软件,主要用于管理、分析和可视化数据。它具有以下主要功能:
数字图像处理是一门涉及获取、处理、分析和解释数字图像的科学与工程领域。这一领域的发展源于数字计算机技术的进步,使得对图像进行复杂的数学和计算处理变得可能。以下是数字图像处理技术的主要特征和关键概念:
问题描述 试题编号: 201312-3 试题名称: 最大的矩形 时间限制: 1.0s 内存限制: 256.0MB 问题描述: 问题描述 在横轴上放了n个相邻的矩形,每个矩形的宽度是1,而第i(1 ≤ i ≤ n)个矩形的高度是hi。这n个矩形构成了一个直方图。
资深数据库专家,专研 MySQL 十余年。擅长 MySQL、PostgreSQL、MongoDB 等开源数据库相关的备份恢复、SQL 调优、监控运维、高可用架构设计等。目前任职于爱可生,为各大运营商及银行金融企业提供 MySQL 相关技术支持、MySQL 相关课程培训等工作。
今天给大家分享一下树模型的经典算法:LightGBM,介绍算法产生的背景、原理和特点,最后提供一个基于LightGBM和随机搜索调优的案例。
在软件开发中遇到问题的时候,我倾向于在不需要阅读源码的情况下解决问题,我会优先去查官方文档、FAQ、google或stackoverflow等网站,去看下有没有前人已经遇到过同类问题。阅读源码来解决问题,算是杀手锏。当然,还有另一种需求,就是希望通过阅读源码了解软件的设计细节,来达到学习的目的,例如,通过阅读Dubbo的源码,我可以了解一个RPC框架的设计细节。
本文以我司生产环境Java应用内存泄露为案例进行分析,讲解如何使用Eclipse的MAT分析定位问题
堆转储,包含了堆现场全貌和线程栈信息(Java 6 Update 14 开始包含)。
色彩分类(Color Classification)用于根据样本的颜色信息对其进行分类识别。与单色目标的分类识别类似,色彩分类过程也包括训练和分类两个阶段。
领取专属 10元无门槛券
手把手带您无忧上云