,NGram类将输入特征转换成n-grams;
NGram将字符串序列(比如Tokenizer的输出)作为输入,参数n用于指定每个n-gram中的项的个数;
from pyspark.ml.feature...,实际就是将字符串与数字进行一一对应,不过这个的对应关系是字符串频率越高,对应数字越小,因此出现最多的将被映射为0,对于未见过的字符串标签,如果用户选择保留,那么它们将会被放入数字标签中,如果输入标签是数值型...,读取一个含标签的数据集,使用VectorIndexer进行处理,转换类别特征为他们自身的索引,之后这个转换后的特征数据就可以直接送入类似DecisionTreeRegressor等算法中进行训练了:..."inf")]
data = [(-999.9,), (-0.5,), (-0.3,), (0.0,), (0.2,), (999.9,)]
dataFrame = spark.createDataFrame...R中的公式用于线性回归一样,字符串输入列会被one-hot编码,数值型列会被强转为双精度浮点,如果标签列是字符串,那么会首先被StringIndexer转为double,如果DataFrame中不存在标签列