首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    搜索和推荐中的深度匹配》——经典匹配模型 2.1 匹配学习

    经典匹配模型 已经提出了使用传统的机器学习技术进行搜索中的查询文档匹配和推荐中的用户项目匹配的方法。这些方法可以在一个更通用的框架内形式化,我们称之为“学习匹配”。...除了搜索和推荐外,它还适用于其他应用,例如释义,问题解答和自然语言对话。本节首先给出学习匹配的正式定义。然后,它介绍了传统学习以匹配搜索和推荐而开发的方法。最后,它提供了该方向的进一步阅读。...Listwise Loss Function 在搜索和推荐中,源对象(例如,查询或用户)通常与多个目标对象(例如,多个文档或项目)相关。用于搜索和推荐的评估措施通常将目标对象列表作为一个整体来处理。...例如,在搜索中,排序函数 g(x,y)可能包含有关x和y之间关系的特征,以及x上的特征和y上的特征。相反,匹配函数 f(x,y)仅包含有关x和y之间关系的特征。...当排名函数 g(x,y)仅包含匹配函数 f(x,y)时,只需要学习即可进行匹配。 在搜索中,x上的特征可以是查询x的语义类别,y上的特征可以是PageRank分数和文档y的URL长度。

    3.7K20

    搜索和推荐中的深度匹配》——2.2 搜索和推荐中的匹配模型

    接下来,我们概述搜索和推荐中的匹配模型,并介绍潜在空间中的匹配方法。 2.2.1 搜索中的匹配模型 当应用于搜索时,匹配学习可以描述如下。...这符合以下事实:将query独立提交给搜索系统,使用query words检索与query关联的文档,并且文档与query的相关性由query和文档的内容确定。...匹配学习以进行搜索的目的是自动学习一个表示为得分函数 f(q,d)(或条件概率分布 P(r∣q,d))的匹配模型。...2.2.3 潜在空间中匹配 如第1节所述,在搜索和推荐中进行匹配的基本挑战是来自两个不同空间(查询和文档以及用户和项目)的对象之间的不匹配。...在不失一般性的前提下,让我们以搜索为例。图2.2说明了潜在空间中的query-文档匹配。 存在三个空间:query空间,文档空间和潜在空间,并且query空间和文档空间之间存在语义间隙。

    1.5K30

    简书搜索自动匹配功能

    先从我做的功能界面开始说起: 本篇主要介绍的就是图中红框标记的搜索自动匹配功能。仔细想一想,有木有很熟悉,对,这功能其实就是跟你每天百度、谷歌这样的搜索功能一样。...每天都用到的搜索自动匹配功能 百度的搜索框(默认显示四条数据) 美团搜索框 美团.jpg 淘宝搜索框 首先,大概过程肯定是这样的:先从输入框中输入关键字,然后根据关键字在缓存或数据库取数据返回显示在下方区域...下面,我写个简书搜索自动匹配的例子,数据是事先定义好在脚本里的,当然,如果我有访问简书数据库的权限和账号密码,就可以动态的获取实时数据了。 开始之前,先给大家普及一下例子中用到的重点知识。...比如这段代码: <script type="...$(obj).text(); $("#kw").val(value); $("#append").hide().html(""); } 写在最后 以上就是我总结分享搜索自动匹配功能的全部内容

    1.7K10

    搜索和推荐中的深度匹配》——1.2 搜索和推荐中匹配统一性

    图1.1说明了搜索和推荐的统一匹配视图。共同的目标是向用户提供他们需要的信息。 ? 图1.1:搜索和推荐中匹配的统一视图 搜索是一项检索任务,旨在检索与查询相关的文档。...这样,搜索可以被认为是在查询和文档之间进行匹配,而推荐可以被认为是在用户和项目之间进行匹配。...更正式地说,搜索和推荐中的匹配都可以视为构建匹配模型f:X×Y →R,该模型计算两个输入对象x和y之间的匹配程度,其中X和Y表示两个对象空间。...明显的趋势是,在某些情况下,搜索和推荐将集成到单个系统中,以更好地满足用户的需求,而匹配在其中起着至关重要的作用。 搜索和推荐已经具有许多共享技术,因为它们在匹配方面很相似。...因此,为了开发更先进的技术,有必要并且有利的是采用统一的匹配视图来分析和比较现有的搜索和推荐技术。 搜索和推荐中的匹配任务在实践中面临着不同的挑战。

    1.3K20

    elasticsearch深入搜索一之近似匹配

    ES深入搜索近似匹配中常见的概念 1....,它会先把要查询的字符串解析成一个terms列表,然后去搜索与所有的terms匹配的document,但是只会保留位置匹配上的 documents。...在query string搜索文本中的几个term时,有时要经过几次移动才能与一个document匹配,这个移动的次数,就是slop....像在全文搜索中的控制精度一样: 如果七个词条中有六个匹配, 那么这个文档对用户而言就已经足够相关了, 但是 match_phrase查询可能会将它排除在外。...改变了分词的方式,也就解决了项目中的单字搜索匹配不到的问题。数字检索的问题没办法直接通过搜索引擎来得到很好的解决,可以在业务上进行处理。返回的顺序是默认根据匹配度, 即score来排序的。

    2.7K51

    搜索如何倒排索引?如何模糊匹配

    那么倒排索引存储的数据将会变成: titletagterm文档idterm文档id这1,2123451是1,2543212一张1 一幅2 很1 相当2 贵1,2 名画1,2 画1,2 二、搜索如何进行模糊匹配...搜索引擎使用倒排索引来进行模糊匹配,以上文为例,输入"很贵的画”搜索时: 首先输入词也进行分词"很/贵/画",然后用得到的term去和索引数据进行比对,得到:"很"->{1},“贵”->{1,2},"...),依旧输入"很贵的画",如果匹配度是100%,那么结果就是"很"∩"贵"∩"画"={1},如果匹配度降到75%(搜索词越短,75%的范围越模糊),那么结果(按正常理解)可以是("很"∩"贵)υ("贵"...∩"画")υ("很"∩"画")={1,2} 2.2 关于短的搜索词 上面说到短的搜索词75%的匹配度很模糊,因为貌似es有个匹配度自动降级,短词搜索的时候匹配度会自动降到最低,只要有一个term匹配就可以当作结果...还是上面的例子,输入"很贵的画",分词得到"很/贵/画",按照75%的匹配度,结果应该是("很"∩"贵)υ("贵"∩"画")υ("很"∩"画")={1,2},但是实际的搜索结果是"很"υ"贵"υ"画"=

    1.5K40

    VSLAM前端:双目极线搜索匹配

    VSLAM前端:双目极线搜索匹配 一、极线搜索匹配 1.1 最小化图像块重投影误差步骤:  1. 假设我们知道第 帧中特征点位置以及它们的深度; ?  2....1.2 极线搜索确定匹配点 ?  假设参考帧 中确定一个特征点的二维图像坐标,假设它的深度值在 之间,根据这两个端点深度值,能够计算出他们在当前帧 中的位置,即图中圆圈中的线段。...确定了极线位置,则可以进行特征搜索匹配。如果极线段很短,小于两个像素,直接使用上面求位姿时提到的最小化图像块重投影误差方法进行二维特征点位置的确定。...如果极线段很长,则分两步,第一步在极线段上间隔采样,对采样的多个特征块一一和参考帧中的特征块匹配,用Zero mean Sum of Squared Differences 方法对各采样特征块评分,得分最高和参考帧中的特征块最匹配...; } else { //默认是这个 //输入右相机的图像,从左相机变换到右相机上的patch_border,从左相机变换到右相机上的patch,最大迭代次数 //输出最终块匹配残差最小的右目中特征点的像素坐标

    2.6K20

    搜索和推荐中的深度匹配》——1.1搜索和推荐

    如今,两种类型的信息访问范例,即搜索和推荐,已广泛用于各种场景中。 在搜索中,首先会对文档(例如Web文档,Twitter帖子或电子商务产品)进行预处理并在搜索引擎中建立索引。...此后,搜索引擎从用户那里进行查询(多个关键字)。该查询描述了用户的信息需求。从索引中检索相关文档,将其与查询匹配,并根据它们与查询的相关性对其进行排名。...例如,如果用户对有关量子计算的新闻感兴趣,则查询“量子计算”将被提交给搜索引擎,并获得有关该主题的新闻报道。 与搜索不同,推荐系统通常不接受查询。...例如,某些搜索引擎将搜索结果与付费广告混合在一起,这对用户和提供者都有利。至于“偶然性”,这意味着常规搜索更多地关注明显相关的信息。另一方面,常规建议可以提供意想不到但有用的信息。 ?...表1.1:搜索和推荐的信息提供机制

    96610

    部分匹配 (三) – 查询期间的即时搜索

    查询期间的即时搜索(Query-time Search-as-you-type) 如今让我们来看看前缀匹配可以怎样帮助全文搜索。...用户已经习惯于在完毕输入之前就看到搜索结果了 – 这被称为即时搜索(Instant Search, 或者Search-as-you-type)。这不仅让用户可以在更短的时间内看到搜索结果。...你不须要以不论什么的方式准备你的数据,就行在不论什么全文字段(Full-text Field)上实现即时搜索。 在短语匹配(Phrase Matching)中。...我们介绍了match_phrase查询,它可以依据单词顺序来匹配全部的指定的单词。...一个前缀a你可以匹配很许多的词条。匹配这么多的词条不仅会消耗许多资源,同一时候对于用户而言也是没有多少用处的。

    96010

    Python字符串的匹配搜索

    如果你想匹配或者搜索特定的字段的时候,如果你匹配的是相对比较简单的字符串的时候你只需要利用find()、rfind()、endswitch()、startswitch()等类似的方法即可,示例如下:...print('{}-{}-{}'.format(year, month, day)) ... ... 2018-07-08 2013-03-13 findall() 方法会搜索文本并以列表形式返回所有的匹配...print(m.group()) ... ... 07/08/2018 03/13/2013 总结 上面主要讲解了一下利用re模块进行字符串的匹配搜索的基本用法,核心方法就是先使用re.compile.../搜索操作的话,可以略过编译部分,直接使用 re 模块级别的函数。...re.findall(r'(\d+)/(\d+)/(\d+)', text) [('07', '08', '2018'), ('03', '13', '2013')] 但是需要注意的是,如果你打算做大量的匹配搜索操作的话

    1.5K20

    Java正则匹配空格_js正则表达式匹配空格

    解决方案 利用正则表达式来匹配空格 \\s+ 首先利用split(“\\s+”);方法来对字符串切割,尽可能的匹配空格,这里也挺有意思,因为空格数目不一样,可以动态变换匹配的空格数量,这个实现原理可以看看底层原理...() 是为了提取匹配的字符串。表达式中有几个()就有几个相应的匹配字符串。(\s*)表示连续空格的字符串。 []是定义匹配的字符范围。...{}一般用来表示匹配的长度,比如 \s{3} 表示匹配三个空格,\s{1,3}表示匹配一到三个空格。 (0-9) 匹配 '0-9′ 本身。...[0-9]* 匹配数字(注意后面有 *,可以为空)[0-9]+ 匹配数字(注意后面有 +,不可以为空){1-9} 写法错误。...另外,括号在匹配模式中也很重要。这个就不延伸了,LZ有兴趣可以自己查查 []表示匹配的字符在[]中,并且只能出现一次,并且特殊字符写在[]会被当成普通字符来匹配

    11.1K10

    括号匹配算法的JS简单实现

    完整示例 See the Pen 括号匹配算法演示 by 戴兜 (@DaiDR) on CodePen....括号匹配算法 (1)(2)(3)(4)(5) 观察上面这组括号,不难发现当 ) 的左侧不存在另一个 ) 时(即未发生嵌套时),最靠近它的 ( 便是和它所对应的括号。...既然最内层的括号依然能够被匹配,似乎也不是无药可救。既然数字能够被跳过,内部嵌套的括号也应该可以被跳过才对。我们通过递归来匹配内部嵌套的括号并将其跳过。...有效性判定 我们没有办法保证每次匹配的字串都是有效的,像 )()((()()( 这种情况可能就会抛出错误。所以在匹配前对字符串进行简单的校验是必要的。 如何校验?...逻辑相似,我们只需要校验每对括号是否都被匹配就行了。从左向右遍历字串,如果当前位置是 ( 时,将其压入数组。

    5.3K50

    搜索和推荐中的深度匹配》——2.5 延伸阅读

    Query重构是解决搜索中查询文档不匹配的另一种方法,即将Query转换为另一个可以进行更好匹配的Query。Query转换包括Query的拼写错误更正。...主题模型也可用于解决不匹配问题。一种简单而有效的方法是使用term匹配分数和主题匹配分数的线性组合【8】。概率主题模型也用于平滑文档语言模型(或Query语言模型)【9】【10】。...【11】对搜索中语义匹配的传统机器学习方法进行了全面调查。 在推荐方面,除了引入的经典潜在因子模型外,还开发了其他类型的方法。...例如,可以使用预先定义的启发式在原始交互空间上进行匹配,例如基于项目的 CF【12】和统一的基于用户和基于项目的 CF【13】。...我们向读者推荐了两篇关于传统推荐匹配方法的调查论文【19】【20】。 引文 【1】Brill, E. and R. C. Moore (2000).

    36420
    领券