首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

数字识别

上篇的内容最后一个案例代码,其实来自官方的手写数字识别案例教程,我自己基于里面的内容自己删减了一些。...这里主要讲一下里面的数据集,sklearn自带了很多数据集,在安装包的data里面,就有手写数字识别数据集。 虽说是数字识别,不过这个数据集里面并没有实际图片。...这里的数字识别核心的可以分为下面几步: 第一步:创建分类器模型 简单理解,可以看作一个映射函数,传入一个数据,就可以返回一个结果给你。...,不过识别前都会通过测试数据测试一下,先看看准确率怎么样,确定效果还不错,就可以用来测试没有见过的数字图片了。...2.从图片文件夹中将所有数字图片读取出来 这里只是做了数字图片的读取,所以只能识别数字。 3.定义一个单张图片匹配的方法。

1.6K10

基于keras的手写数字识别_数字识别

一、概述 手写数字识别通常作为第一个深度学习在计算机视觉方面应用的示例,Mnist数据集在这当中也被广泛采用,可用于进行训练及模型性能测试; 模型的输入: 32*32的手写字体图片,这些手写字体包含0~...9数字,也就是相当于10个类别的图片 模型的输出: 分类结果,0~9之间的一个数 下面通过多层感知器模型以及卷积神经网络的方式进行实现 二、基于多层感知器的手写数字识别 多层感知器的模型如下,其具有一层影藏层...x_test, y_test) # 从Keras导入Mnist数据集 (x_train, y_train), (x_validation, y_validation) = loadData() # 显示4张手写数字图片....] - ETA: 0s 10000/10000 [==============================] - 1s 112us/step MLP: 98.07% 三、基于卷积神经网络的手写数字识别

1.8K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    mnist手写数字识别代码(knn手写数字识别)

    MNIST 手写数字识别模型建立与优化 本篇的主要内容有: TensorFlow 处理MNIST数据集的基本操作 建立一个基础的识别模型 介绍 S o f t m a x Softmax Softmax...回归以及交叉熵等 MNIST是一个很有名的手写数字识别数据集(基本可以算是“Hello World”级别的了吧),我们要了解的情况是,对于每张图片,存储的方式是一个 28 * 28 的矩阵,但是我们在导入数据进行使用的时候会自动展平成...plt.matshow(curr_img, cmap=plt.get_cmap('gray')) plt.show() 通过上面的代码可以看出数据集中的一些特点,下面建立一个简单的模型来识别这些数字...方便矩阵乘法处理 x = tf.placeholder(tf.float32, [None, 784]) # 输出的结果是对于每一张图输出的是 1*10 的向量,例如 [1, 0, 0, 0...] # 只有一个数字是...tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) # 判断是否预测结果与正确结果是否一致 # 注意这里使用的函数的 argmax()也就是比较的是索引 索引才体现了预测的是哪个数字

    2.3K30

    opencv +数字识别

    现在很多场景需要使用的数字识别,比如银行卡识别,以及车牌识别等,在AI领域有很多图像识别算法,大多是居于opencv 或者谷歌开源的tesseract 识别....以上几种ocr 识别比较,最后选择了opencv 的方式进行ocr 数字识别,下面讲解通过ocr识别的基本流程和算法. opencv 数字识别流程及算法解析 要通过opencv 进行数字识别离不开训练库的支持...,需要对目标图片进行大量的训练,才能做到精准的识别出目标数字;下面我会分别讲解图片训练的过程及识别的过程. opencv 识别算法原理 1.比如下面一张图片,需要从中识别出正确的数字,需要对图片进行灰度...原图 灰度化图 二值化图 寻找轮廓 识别后的结果图 以上就是简单的图片进行灰度化、二值化、寻找数字轮廓得到的识别结果(==这是基于我之前训练过的数字模型下得到的识别结果==) 有些图片比较赋值...“.”的图片,这样就可以识别出小数点的数字支持. -2 这个分类主要是其他一些无关紧要的图片,也就是不是数字和点的都归为这一类中.

    2.5K20

    机器学习-手写数字识别

    据说,在命令行窗口打印出‘hello,world’是入门编程语言的第一个程序,那么手写数字识别就是机器学习的hello,world了,学习的东西不经常复习的容易忘记,因此在这里记录一下。...要进行手写数字识别,首先需要数据,然后在定义一个神经网络来对数据进行训练,然后把训练好的权重和模型保存起来,在另外的程序调用,并拿来测试你想要测试的图片,看看训练的结果是不是比较正确。...关于数据获取,这里选择的keras自带的数据集,可以在keras的官网可以找到你需要的数据集,https://keras.io/datasets/ 数据集包含10个数字的60,000个...然后再添加一个隐藏层,这里就不用定义输入个数,只需要输出的和激活函数,紧接着就是输出层了,因为我们的数字是0-9,有10个数字,这里的大小也是10,而这里的激活函数就要改成softmax,模型就这样构建完成了

    1.3K20

    MNIST__数字识别__SOFTMAX

    本次MNIST的手写数字识别未采用input_data.py文件,想尝试一下用原始的数据集来运行这个DEMO。...需要注意的一点是,源码中的图片标签采用的的ONE-HOT编码,而数据集中的标签用的是具体的数字。...源码结构: 1.读取MNIST 2.创建占位符(用读取的数据填充这些空占位符) 3.选用交叉熵作为损失函数 4.使用梯度下降法(步长0.02),来使损失函数最小 5.初始化变量 6.开始计算 7.输出识别率...correct_prediction_1, "float")) # 计算训练精度 print(sess.run(accuracy_1, feed_dict={x: xs_t, y_: ys_t})) #输出识别的准确率...可又说不上来~ 参考资料: ONE-HOT使用体会 : https://blog.csdn.net/lanhaier0591/article/details/78702558 训练Tensorflow识别手写数字

    91810

    用TensorFlow进行手写数字识别

    对于人类来说,识别手写的数字是一件非常容易的事情。我们甚至不用思考,就可以看出下面的数字分别是5,0,4,1。 但是想让机器识别这些数字,则要困难得多。...如果让你用传统的编程语言(如Java)写一个程序去识别这些形态各异的数字,你会怎么写?写很多方法去检测横、竖、圆这些基本形状,然后计算它们的相对位置?我想你很快就会陷入绝望之中。...为了找到识别手写数字的方法,机器学习界的大师Yann LeCun利用NIST(National Institute of Standards and Technology 美国国家标准技术研究所)的手写数字库构建了一个便于机器学习研究的子集...更详细的信息可以参考Yann LeCun的网站:http://yann.lecun.com/exdb/mnist/ 已经有很多研究人员利用该数据集进行了手写数字识别的研究,也提出了很多方法,比如KNN、...抛开这些研究成果,我们从头开始,想想怎样用机器学习的方法来识别这些手写数字。因为数字只包含0~9,对于任意一张图片,我们需要确定它是0~9中的哪个数字,所以这是一个分类问题。

    6.4K01
    领券