首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    前端工程师为什么要学习编译原理?

    普遍的观点认为,前端就是打好 HTML、CSS、JS 三大基础,深刻理解语义化标签,了解 N 种不同的布局方式,掌握语言的语法、特性、内置 API。再学习一些主流的前端框架,使用社区成熟的脚手架,即可快速搭建一个前端项目。胜任前端工作非常容易。再往深处学习,你会发现前端这个领域,总是有学不完的框架、工具、库,不断有新的轮子出现。技术推陈出新,版本快速迭代,但万变不离其宗。工具致力于流程自动化、规范化,服务于简洁、优雅、高效的编码,将问题高度抽象化、层次化。在如今前端开源界如此火热的现状下,框架的使用者与框架的维护者联系更加紧密,不仅能深入源码来更彻底地认识框架,还能够提出问题,参与讨论,贡献代码,共同解决技术问题,推进前端生态的发展和壮大。而编译原理,作为一门基础理论学科,除了 JS 语言本身的编译器之外,更成为 Babel、ESLint、Stylus、Flow、Pug、YAML、Vue、React、Marked 等开源前端框架的理论基石之一。了解编译原理能够对所接触的框架有更充分的认识。

    03

    算法设计策略----动态规划法

    动态规划法:与贪心法类似,动态规划法也是一种求解最优化问题的算法设计策略。它也采取分布决策的方法。但与贪心法不同的是,动态规划法每一步决策依赖子问题的解。直观上,为了在某一步做出决策,需要先求若干子问题,这就使得动态规划法是自底向上的。 按照多部决策方法,一个问题的活动过程可以分成若干阶段,每个阶段可能包含一个或多个状态。多部决策求解方法就是从初始状态开始做出每个阶段的决策,形成一个决策序列,该决策序列也成为策略。对于每一个决策序列,可以用一个数值函数(目标函数)衡量该策略的优劣。问题求解的目标是获取最优决

    00

    Feature Pyramid Networks for Object Detection

    特征金字塔是不同尺度目标识别系统的基本组成部分。但最近的深度学习对象检测器已经避免了金字塔表示,部分原因是它们需要大量的计算和内存。本文利用深卷积网络固有的多尺度金字塔结构构造了具有边际额外成本的特征金字塔。提出了一种具有横向连接的自顶向下体系结构,用于在所有尺度上构建高级语义特征图。该体系结构称为特征金字塔网络(FPN),作为一种通用的特征提取器,它在几个应用程序中得到了显著的改进。在一个基本的Fasater R-CNN系统中使用FPN,我们的方法在COCO检测基准上实现了最先进的单模型结果,没有任何附加条件,超过了所有现有的单模型条目,包括来自COCO 2016挑战赛冠军的条目。此外,我们的方法可以在GPU上以每秒6帧的速度运行,因此是一种实用而准确的多尺度目标检测解决方案。

    02
    领券