当我们测试语音识别相关的系统,衡量性能是非常重要的,一般语音识别准确性最常用的度量标准是字错误率,比如录音笔中的转写功能或者输入法语音输入等等,其实就是语音识别提供的服务,因此也需要测试相关的指标。
- 问题 - 怎么把文字描述的时分秒数据 改成小时数? - 方法 - 替换文字形成公式 然后对公式进行计算 · 步骤1 · “小时”替换为“+” · 步骤2 · 将“分钟”替换为“/60+” · 步骤3 · 将“秒”替换成“/3600” · 步骤4 · 使用函数Expression.Evaluate计算公式 但是,当出现没有分及秒的情况时 替换后公式中会多出一个“+”号 因此计算前用Text.TrimEnd删除 - 一步解 - 用List.Accumulate函数完成批量替换
系统:Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 Python:3.6.0
作为当今快速发展的技术之一,低代码平台为开发人员提供了更高效、更简便的工具和方法,以快速构建和部署应用程序。现在市面上的大部分低代码平台可以满足大部分日常的需求,但对于一些定制化并且低代码平台无法实现的需求,如何解决呢?最常见的方法就是对低代码平台的功能进行扩展(低代码插件)。因此,今天小编将以葡萄城的企业级低代码开发平台——活字格为例为的大家介绍如何使用C#编写一个低代码插件。
身处信息时代之中,我们最能明显感受到的一点就是密集数据大量爆发,人们积累的数据也越来越多。这些庞杂的数据出现在一起,传统使用的很多数据记录、查询、汇总工具并不能满足人们的需求。更有效的将这些大量数据处理,让计算机听懂人类需要的数据效果,从而形成更加自动化、智能的数据处理方式。
本文来自于公众号读者投稿。作者Suke,数据爱好者,主攻方向:数据分析,数据产品化。
作者 | 高斯定理 欢迎关注知乎"高斯定理"和专栏"边走边看" 整理 | NewBeeNLP
在前端开发领域,物理引擎是一个相对小众的话题,它通常都是作为游戏开发引擎的附属工具而出现的,独立的功能演示作品常常给人好玩但是无处可用的感觉。仿真就是在计算机的虚拟世界中模拟物体在真实世界的表现(动力学仿真最为常见)。仿真能让画面中物体的运动表现更符合玩家对现实世界的认知,比如在《愤怒的小鸟》游戏中被弹弓发射出去小鸟或是因为被撞击而坍塌的物体堆,还有在《割绳子》小游戏中割断绳子后物体所发生的单摆或是坠落运动,都和现实世界的表现近乎相同,游戏体验通常也会更好。
每次更新我们需要计算整个数据集的梯度,因此使用批量梯度下降进行优化时,计算速度很慢,而且对于不适合内存计算的数据将会非常棘手。批量梯度下降算法不允许我们实时更新模型。
在前端开发的奇妙之旅中,构建一个既实用又具教育意义的计算器是提升技能的绝佳途径。本篇笔记将引导你从零开始,打造一个增强版的JavaScript计算器。这个计算器不仅支持基本的加减乘除运算,还能实时显示计算过程,让你一目了然每一步操作及其结果。👨💻✨
上回咱们介绍了《关于移动游戏运营数据指标,这里有一份简单说明,请查收》,不少朋友们看完后留言希望出一期关于LTV的计算和预估科普贴,刚好最近才哥也在做这方面的数据处理。
上一篇文章「安利一些不错的D3.js资源 - 牛衣古柳 2021.06.29」的反响还不错,记得有新群友说是主管推给她文章才加过来的,也是很神奇。
当主从的redis性能和容量满足不了项目的需求时,一般会采用集群方案。而原生的集群方案是一个比较好的选择。本文主要是讨论如何保证集群版高可用。高可用分为选择最佳的机器、修复节点故障、升级或者修复软件故障、让数据落地保存这几个方面。
今天给大家分享的是谷歌发表的一篇用于点击率预估中消除位置偏差的论文,除考虑位置本身的影响外,还考虑了相邻位置及展示的item的交叉影响,一起来看一下。
在工作中经常会遇到钢材重量的计算问题,今天就给大家献上各种各样钢材重量的计算方法,绝对实用。 ##钢材重量计算公式
Power BI虽然源于Excel,但毕竟是不同的产品。我们要试图抛弃Excel中单元格思维的方式,在BI中的表是以列式存储,没有Excel中以A1单元格定位的形式,对于习惯于Excel的你可能要适应一段时间,不过这是件好事情,因为这样的方式使公式易于阅读理解。
机器学习在各个领域都有广泛的应用,特别在数据分析领域有着深远的影响。决策树是机器学习中最基础且应用最广泛的算法模型。本文介绍了机器学习的相关概念、常见的算法分类和决策树模型及应用。通过一个决策树案例,着重从特征选择、剪枝等方面描述决策树的构建,讨论并研究决策树模型评估准则。最后基于 R 语言和 SPSS 这两个工具,分别设计与实现了决策树模型的应用实例。 机器学习概念 机器学习 (Machine Learning) 是近 20 多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度
摘要: 机器学习在各个领域都有广泛的应用,特别在数据分析领域有着深远的影响。决策树是机器学习中最基础且应用最广泛的算法模型。本文介绍了机器学习的相关概念、常见的算法分类和决策树模型及应用。通过一个决策树案例,着重从特征选择、剪枝等方面描述决策树的构建,讨论并研究决策树模型评估准则。最后基于 R 语言和 SPSS Modeler这两个工具,分别设计与实现了决策树模型的应用实例。1.机器学习 机器学习在各个领域都有广泛的应用,特别在数据分析领域有着深远的影响。决策树是机器学习中最基础且应用最广泛的算法模型。本
摘要: 机器学习在各个领域都有广泛的应用,特别在数据分析领域有着深远的影响。决策树是机器学习中最基础且应用最广泛的算法模型。本文介绍了机器学习的相关概念、常见的算法分类和决策树模型及应用。通过一个决策树案例,着重从特征选择、剪枝等方面描述决策树的构建,讨论并研究决策树模型评估准则。最后基于 R 语言和 SPSS Modeler这两个工具,分别设计与实现了决策树模型的应用实例。1.机器学习
机器学习在各个领域都有广泛的应用,特别在数据分析领域有着深远的影响。决策树是机器学习中最基础且应用最广泛的算法模型。本文介绍了机器学习的相关概念、常见的算法分类和决策树模型及应用。通过一个决策树案例,着重从特征选择、剪枝等方面描述决策树的构建,讨论并研究决策树模型评估准则。最后基于 R 语言和 SPSS Modeler这两个工具,分别设计与实现了决策树模型的应用实例。
Rebucket就是string matching methods的一种,这篇论文主要提出了TraceSim这一结合了两种方法的堆栈相似度度量方法
多面体的体积和表面积:有立方体计算公式、长方体∧棱柱∨计算公式、三棱柱计算公式、棱锥计算公式、棱台计算公式、圆柱和空心圆柱∧管∨计算公式、斜线直圆柱计算公式、直圆锥计算公式、圆台计算公式、球计算公式、球扇形∧球楔∨计算公式、球缺计算公式、圆环体∧胎∨计算公式、球带体计算公式、桶形计算公式、椭球体计算公式、交叉圆柱体计算公式、梯形体计算公式等。
教程地址:http://www.showmeai.tech/tutorials/34
2015年,在文献[1]中首次提出attention。到了2016年,在文献[2]中提出了self-attention方法。作者将self-attention和LSTM结合用在了机器阅读任务上。为了好理解,下文将LSTM表示成SimpleRNN。
机器学习概念 机器学习 (Machine Learning) 是近 20 多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。 机器学习理论主要是设计和分析一些让计算机可以自动学习的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论。在算法设计方面,机器学习理论关注可以实现的、行之有效的学习算法。很多相关问题的算法复杂度较高,而且很难找到固有
本文不在此介绍太阳高度角、方位角是什么,相关概念请移步Wikipedia。鉴于很多相关专业人员需要计算太阳高度角、方位角,而网上介绍的公式多数或是不正确,或是杂乱无章。作者经查阅相关理论和教程,在此整理了下太阳高度角、方位角等的计算公式,并根据此公式做出了相关产品,通过了检验。如有错误,请各位指正。
文 | 刘昭东, 软件工程师, IBM 机器学习在各个领域都有广泛的应用,特别在数据分析领域有着深远的影响。决策树是机器学习中最基础且应用最广泛的算法模型。本文介绍了机器学习的相关概念、常见的算法分类和决策树模型及应用。通过一个决策树案例,着重从特征选择、剪枝等方面描述决策树的构建,讨论并研究决策树模型评估准则。最后基于 R 语言和 SPSS 这两个工具,分别设计与实现了决策树模型的应用实例。 机器学习概念 机器学习 (Machine Learning) 是近 20 多年兴起的一门多领域交叉学科,涉及概率论
圈复杂度(Cyclomatic Complexity)是衡量计算机程序复杂程度的一种措施。它根据程序从开始到结束的线性独立路径的数量计算得来的。
在数据应用中,excel是我们最常见的数据处理与展示的工具,在此之前,我们已经学习了数据处理以及excel快捷键的操作(如有需要,可参考之前文章进行学习),在学会了Excel的基本操作后,会不会还局限在仅仅对excel进行界面操作呢?其实excel还为我们提供了丰富的函数。函数作为Excel处理数据的一个最重要手段,功能是十分强大的,在生活和工作实践中可以有多种应用。 接下来,请跟随笔者开始Excel的函数之旅。本文主要介绍一些与函数有关的知识。
公司从去年年底到现在,彩票的项目一直没停过,从这一方面可以侧面反应出,在线够彩会逐渐代替实体店,就像在线购物一样,这个需求是相当大的。
本文首发于我的知乎:https://zhuanlan.zhihu.com/p/104753473
问题及算法描述 更具体地描述上面的问题:有序列x和y,其中y是包含结构域的序列,x是要从中找到多重匹配的序列。将x分割成一段一段的不交叠的子序列,这些子序列要么不参与和y的联配,要么与y的某一段子序列联配且联配的分值不低于一个阈值T。如果将x的某一子序列的联配分值减去T作为其“标准联配分值”,那么最终目标是找到这些参与联配的x的子序列的“标准联配分值”之和的最大值。
集群状态信息主要包含整个集群的一些统计信息,例如文档数、分片数、资源使用情况等。
现在,解放双手的时刻来了,只需要掌握一点Python语法,上面的公式只需要4行就能生成,其中3行还是Python的计算公式。
大家好,我是鱼皮,最近为了帮助自己完成写超长 SQL 语句(几千行)的工作,我花几个小时开发了一个小工具 —— 结构化 SQL 生成器,可以使用扁平的 JSON 结构来轻松生成层层嵌套的、复杂的 SQL,从而大幅提高写 SQL 的效率!
PKS的确能屈能伸,虽说复杂控制是咱的强项,普通计算只是小菜一碟,但做的也是有板有眼,丝毫不含糊。
编者按:本书节选自图书《深度学习轻松学》第十章部分内容,书中以轻松直白的语言,生动详细地介绍了深层模型相关的基础知识,并深入剖析了算法的原理与本质。同时还配有大量案例与源码,帮助读者切实体会深度学习的核心思想和精妙之处。 又双叒叕赠书啦!请关注文末活动。 本章将为读者介绍基于深度学习的生成模型。前面几章主要介绍了机器学习中的判别式模型,这种模型的形式主要是根据原始图像推测图像具备的一些性质,例如根据数字图像推测数字的名称,根据自然场景图像推测物体的边界;而生成模型恰恰相反,通常给出的输入是图像具备的性质,而
本章将为读者介绍基于深度学习的生成模型。这种模型的形式主要是根据原始图像推测图像具备的一些性质,例如根据数字图像推测数字的名称,根据自然场景图像推测物体的边界;而生成模型恰恰相反,通常给出的输入是图像
导语:本章将为读者介绍基于深度学习的生成模型。前面几章主要介绍了机器学习中的判别式模型,这种模型的形式主要是根据原始图像推测图像具备的一些性质,例如根据数字图像推测数字的名称,根据自然场景图像推测物体的边界;而生成模型恰恰相反,通常给出的输入是图像具备的性质,而输出是性质对应的图像。这种生成模型相当于构建了图像的分布,因此利用这类模型,我们可以完成图像自动生成(采样)、图像信息补全等工作。另外,小编Tom邀请你一起搞事情! 在深度学习之前已经有很多生成模型,但苦于生成模型难以描述难以建模,科研人员遇到了很多
】这个就是原来的图片,外面加了一圈padding,因为padding是一圈,所以左右、上下都有,所以是两倍的。
来源:1024深度学习 作者:冯超 本文长度为2600字,建议阅读6分钟 本章介绍基于深度学习思想的生成模型——VAE和GAN,以及GAN的变种模型。 在深度学习之前已经有很多生成模型,但苦于生成模型难以描述难以建模,科研人员遇到了很多挑战,而深度学习的出现帮助他们解决了不少问题。本章介绍基于深度学习思想的生成模型——VAE和GAN,以及GAN的变种模型。 VAE 本节将为读者介绍基于变分思想的深度学习的生成模型——Variational autoencoder,简称VAE。 1.1 生成式模型 前
布隆过滤器(BloomFilter)是由只存0或1的位数组和多个hash算法, 进行判断数据一定不存在或者可能存在的算法.
取微小一段函数可近似看成直线方程,绕x轴旋转一周得到一圆台,那么,旋转面面积就可近似为所有微小圆台的侧面积之和。取n趋于无穷时的极限便可得到旋转曲面的面积。
③ 高斯分布参数 : 每个聚类分组的样本都是符合 高斯分布 的 , 根据样本可以得到其 高斯分布的参数 , 均值
计算公式:小区内所有LTE-NR NSA DC的PCell用户SgNB增加成功总次数 (无)/小区内所有LTE-NR NSA DC的PCell用户SgNB增加尝试总次数 (无)
1)准确率(Accuracy)表示正确分类的测试实例的个数占测试实例总数的比例,计算公式为:
领取专属 10元无门槛券
手把手带您无忧上云