作者:寒小阳 && 龙心尘 (感谢投稿) 原文 :http://blog.csdn.net/han_xiaoyang/article/details/49123419 1、总述 逻辑回归是应用非常广
二十世纪早期,逻辑回归曾在生物科学中被使用,在那之‘后也在许多社会科学中被广泛运用。逻辑回归通常被应用于因变量(目标)是分类的场景,比如:
舒石 李林 编译整理 量子位 出品 | 公众号 QbitAI 人脸识别越来越常见,今年春运已经能刷脸进站,iPhone的相册就能用人脸分类照片,社交网站上能根据人脸标记照片。然而如同央视315提醒的那样,这项技术距离无懈可击还有一段距离。 比如说,一副成本1块钱的眼镜,就能骗过人脸识别的AI。 一个能够愚弄人脸识别AI的眼镜 来自卡内基梅隆大学(CMU)的研究人员表示,佩戴专门设计过的眼镜架,可以愚弄最先进的面部识别软件。一副眼镜,不单可以让佩戴者消失在人工智能识别系统之中,而且还能让AI把佩戴者误以为
第5章 支持向量机 来源:ApacheCN《Sklearn 与 TensorFlow 机器学习实用指南》翻译项目 译者:@QiaoXie 校对:@飞龙 支持向量机(SVM)是个非常强大并且有多种功能的机器学习模型,能够做线性或者非线性的分类,回归,甚至异常值检测。机器学习领域中最为流行的模型之一,是任何学习机器学习的人必备的工具。SVM 特别适合复杂的分类,而中小型的数据集分类中很少用到。 本章节将阐述支持向量机的核心概念,怎么使用这个强大的模型,以及它是如何工作的。 线性支持向量机分类 SV
支持向量机(SVM)是个非常强大并且有多种功能的机器学习模型,能够做线性或者非线性的分类,回归,甚至异常值检测。机器学习领域中最为流行的模型之一,是任何学习机器学习的人必备的工具。SVM 特别适合应用于复杂但中小规模数据集的分类问题。
本周内容较多,故分为上下两篇文章。 一、内容概要 1. Anomaly Detection Density Estimation Problem Motivation Gaussian Distribution Algorithm Building an Anomaly Detection System(创建异常检测系统) Developing and Evaluating an Anomaly Detection System Anomaly Detection vs. Supervised Lear
一、分类算法中的损失函数 image.png 1、0-1损失函数 image.png 2、Log损失函数 2.1、Log损失 image.png 2.2、Logistic回归算法的损失函数 image.png 2.3、两者的等价 image.png 3、Hinge损失函数 3.1、Hinge损失 Hinge损失是0-1损失函数的一种代理函数,Hinge损失的具体形式如下: max(0,1−m) 运用Hinge损失的典型分类器是SVM算法。 3.2、SVM的损失函数 image.png 3.3、两者的等价 i
前面一篇《如何应对拥挤不堪的在家办公2-探索》中介绍了在家办公时如何通过探索进行完整的工作准备,这篇文章将会介绍如何进行做到在这些选项中排除无意义的大多数。
X是特征向量 theta是参数向量 theta转置乘以特征向量 就是参数与特征相乘
作者:黄海广 在接下来的一系列视频中,我将向大家介绍异常检测(Anomaly detection)问题。这是机器学习算法的一个常见应用。这种算法的一个有趣之处在于:它虽然主要用于非监督学习问题,但从某些角度看,它又类似于一些监督学习问题。 问题的动机 参考文档:15-1-Problem Motivation(8 min).mkv 在接下来的一系列视频中,我将向大家介绍异常检测(Anomaly detection)问题。这是机器学习算法的一个常见应用。这种算法的一个有趣之处在于:它虽然主要用于非监督学习问题,
损失函数用来评价模型的预测值和真实值不一样的程度,损失函数越好,通常模型的性能越好。不同的模型用的损失函数一般也不一样。
异常检测(Anomaly Detection) 给定数据集 ?(1),?(2),..,?(?),我们假使数据集是正常的,我们希望知道新的数据 ????? 是不是异常的,即这个测试数据不属于该组数据
边界是指对于输入等价类和输出等价类而言,稍高于其边界值及稍低于其边界值的一些特定情况。
等价类划分法是把程序的 输入域 划分为若干部分,然后从每个部分中选取少数代表性数据当作测试用例。
等价类划分法是把所有可能的输入数据,即程序的输入域划分成若干部分(子集),然后从每个部分中选取少数代表性数据作为测试用例;该方法是一种重要的,常用的黑盒测试用例设计方法。
您可能听说过所谓的内核技巧,这是一种支持向量机(SVMs)处理非线性数据的小技巧。这个想法是将数据映射到一个高维空间,在这个空间中数据变成线性,然后应用一个简单的线性支持向量机。听起来很复杂,但操作起来确实如此。尽管理解该算法的工作原理可能比较困难,但理解它们试图实现的目标却相当容易。往下读,自然就会明白了!
把程序的输入域和输出域划分成若干部分,然后从各个部分中选取若干代表性数据作为测试用例。这些数据在测试中的作用等价于其所属部分的其他值。
1)等价类划分: 等价类是指某个输入域的子集合.在该子集合中,各个输入数据对于揭露程序中的错误都是等效的.并合理地假定:测试某等价类的代表值就等于对这一类其它值的测试.因此,可以把全部输入数据合理划分为若干等价类,在每一个等价类中取一个数据作为测试的输入条件,就可以用少量代表性的测试数据.取得较好的测试结果.等价类划分可有两种不同的情况:有效等价类和无效等价类.
csape只是Cubic spline插值,interp1可以选择几种不同的插值方法。
本研究基于混合长理论,利用高分辨率湍流数据、颗粒物通量数据以及梯度数据,建立了颗粒物的湍流扩散系数并嵌入到WRF-Chem模式进行在线评估验证:新添加的PM2.5气溶胶湍流扩散系数可以显著改善中国东部夜间稳定边界层污染物浓度被高估的现象,但湍流扩散对华北复杂地形区域(太行山沿山)的污染物浓度模拟不太敏感。
本文介绍了如何基于商圈和地标的位置搜索实现方法,包括多边形、矩形和圆形的划定方式以及地标搜索POI的方法。同时,本文还对比了三种方式的精确度、复杂度和灵活度,并建议在满足需求的前提下选择合适的方法。
教程地址:http://www.showmeai.tech/tutorials/34
作为一个测试人员,软件测试的流程首先是要非常熟悉的,何时何地都能脱口而出,避免一切翻车的可能。需要注意的是流程没有唯一答案,具体由项目决定。所以给出的只是一个还算通用的参考流程。 我们要熟知的测试流程: 总结一下:在测试流程中,有6个部分,其中3个部分涉及到了用例,可见写好用例的重要性。
从图中可以直接看出来,黑盒测试就当整个程序是个黑盒子,我们看不到它里面做了些什么事情,只能通过输入输出看是否能得到我们所需的来测试。而白盒测试可以当盒子是透明的,里面的一切我们都看的清楚,从而我们可以通过去测内部结构来测试。
在接下来的一系列视频中,我将向大家介绍异常检测(Anomaly detection) 问题。这是机器学习算法的一个常见应用。这种算法的一个有趣之处在于:它虽然主要用于非监督学习问题,但从某些角度看,它又类似于一些监督学习问题。什么是异常检测呢?为了解释这个概念,让我举一个例子吧: 假想你是一个飞机引擎制造商,当你生产的飞机引擎从生产线上流出时,你需要进行QA(质量控制测试),而作为这个测试的一部分,你测量了飞机引擎的一些特征变量,比如引擎运转时产生的热量,或者引擎的振动等等。这样一来,你就有了一个数据集,你将这些数据绘制成图表,如下图。
参数曲面的参数域变量一般用UV字母来表达,比如参数曲面F(u,v)。所以一般叫的三维曲面本质上是二维的,它所嵌入的空间是三维的。凡是能通过F(u,v)来表达的曲面都是参数曲面,比如NURBS曲面。对于三角网格,如果能把它与参数平面建立一一映射,那么它也就被参数化了,这个映射就是UV展开。如下图所示,左图是右边网格在参数平面上的展开,这样每个顶点都有了一个uv参数值,这也被称为纹理坐标。
定义:黑盒测试又称功能测试。黑盒测试就是把测试对象看成一个不能打开的黑盒子,在完全不考虑程序的内部结构和处理过程的情况下,只依据程序的需求规格说明书,检查程序的功能是否符合他的功能说明。
记得以前看爆笑校园里有一集讲到,一个人对着前面开了一枪,过了一阵子弹打中他自己的后脑勺。作者想通过这个冷笑话告诉大家一件事:地球是圆的。
测试用例(Test Case)是为了实施测试而向被测试的系统提供的一组集合,这组集合包含:测试环境、操作步骤、测试数据、预期结果等要素 。
(1)黑盒测试又称功能测试、数据驱动测试或基于规格说明书的测试,是一种从用户观点出发的测试。
任何一款软件或应用在上线之前都必须要经过各种功能,性能等的测试,本篇将带你快速了解软件测试相关的基础知识。
LinkedBlockingQueue是由单链表构成的界限可选的阻塞队列,如不指定边界,则为Integer.MAX_VALUE,因此如不指定边界,一般来说,插入的时候都会成功。
主要分享测试的学习资源,帮助快速了解测试行业,帮助想转行、进阶、小白成长为高级测试工程师。
假设我要训练一个 CNN 来识别三种类别:人、猫、狗。因此输出向量Y将只有三个元素C1、C2、C3,每个元素都是一个类别得分。如果有更多类别,这个向量将边长。对于上图,我们希望训练CNN识别图像中的人,并用一个边界框定位人。为此,向输出向量中添加边界框参数-x、y、w、h用于确定边界框的大小。x、y确定边框中心坐标;w、h确定边界框的宽和高。
目前 Web 的 TRTC 没有静音检测,在关闭麦克风的情况下发言没有提示,有时候会有比较尴尬的会议场景出现,为提升用户体验,这里尝试将腾讯会议的解决思路引入。
Pedro Domingos是华盛顿大学计算机科学与工程学教授,也是国际机器学习协会的联合创始人之一。他曾在IST Lisbon获得电子工程和计算科学的硕士学位,在加州大学Irvine分校获得信息与计算科学博士学位。而后在IST作为助理教授工作了两年,于1999年加入华盛顿大学。他还是SIGKDD创新奖获得者(数据科学领域中最高奖项),也是AAAI Fellow之一。雷锋网注:本文是Pedro Domingos在Google所作的机器学习演讲内容整理。 让我们首先从一个简单的问题开始,知识到底是从哪
人脸识别有四个步骤:人脸检测、人脸对齐、人脸特征提取和特征比较。人脸特征提取是面识别过程中最重要的任务之一。为了提高面识别的准确性,有必要增强模型提取判别性人脸特征的能力。
机器学习排序(Learning to rank)将搜索转化为机器学习问题,在本文中,我想找出搜索与其他机器学习问题不同的原因,如何将搜索排名作为机器学习或者是分类和回归问题?我们将通过两种方法,对机器学习排序方法的评估有个直观的认识。
需要说明的是:边缘和物体间的边界并不等同,边缘指的是图像中像素的值有突变的地方,而物体间的边界指的是现实场景中的存在于物体之间的边界。
岳鹰全景监控,是阿里UC官方出品的先进移动应用线上监控平台,为开发者及企业提供一套完整的移动应用线上质量监控解决方案。岳鹰WEB前端监控,可实时监控页面性能、JS异常、资源加载异常、API成功率、自定义错误等异常情况。本文通过岳鹰前端监控SDK的实际案例,介绍如何基于JavaScript来开发SDK,并分享一些设计原则以及实现技巧。
白盒测试又称结构测试、透明盒测试、逻辑驱动测试或基于代码的测试。白盒测试是一种测试用例设计方法,盒子指的是被测试的软件,白盒指的是盒子是可视的,你清楚盒子内部的东西以及里面是如何运作的。"白盒"法全面了解程序内部逻辑结构、对所有逻辑路径进行测试。"白盒"法是穷举路径测试。在使用这一方案时,测试者必须检查程序的内部结构,从检查程序的逻辑着手,得出测试数据。贯穿程序的独立路径数是天文数字。
是把所有可能的输入数据,即程序的输入域划分成若干部分子集,然后从每一个子集中选取少数具有代表性的数据作为测试用例。该方法是一种重要的,常用的黑盒测试用例设计方法。
在接下来的一系列视频中,我将向大家介绍异常检测(Anomaly detection)问题。这是机器学习算法的一个常见应用。这种算法的一个有趣之处在于:它虽然主要用于非监督学习问题,但从某些角度看,它又类似于一些监督学习问题。
确定边界 两数之和的一半为分割点, 一分为二 把值放到temp,再放回arr原数组 static void merge_sort(int[] arr, int l, int r) { //确定边界 if (l >= r) return; // 两数之和的一半为分割点, 一分为二 int mid = l+r >> 1; merge_sort(arr, l, mid); merge_sort(
中山大学研一上学期现代人工智能技术复习的相关资料,主要内容为神经网络基础知识,可能涉及到线性代数、概率论、线性模型、卷积神经网络和CV进展
蒙特卡洛方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。
超平面是分割输入变量空间的线。在SVM中,选择超平面以最佳地将输入变量空间中的点与它们的类(0级或1级)分开。在二维中,您可以将其视为一条线,并假设我们的所有输入点都可以被这条线完全分开。SVM学习算法找到导致超平面最好地分离类的系数。
插值法又称“内插法”,是利用函数f (x)在某区间中已知的若干点的函数值,作出适当的特定函数,在区间的其他点上用这特定函数的值作为函数f (x)的近似值,这种方法称为插值法。如果这特定函数是多项式,就称它为插值多项式。
在iOS中,weex可以类似理解为“放大版”的JSBrdige,weex代码的三部分构成:template(模版)、style(样式)、script(脚本),本章重点了解weex的三要素与通用样式。
领取专属 10元无门槛券
手把手带您无忧上云