首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    ps切图必知必会

    对于前端切图,相信很多小伙伴都不会陌生,但是对于新手,有时却很棘手,想着我本是来写代码的,你给我一张图干嘛的, 有时,或许你总奢望着UI设计师,把所有的图都给你切好,你只管撸码的,然而事实并非如此,有时候呢,设计师给我们的图,也并非是一成不变,往往也需要作一些调整,更改,完美的将UI设计图,进行还原实现产品经理的意图,是前端小伙伴职责所在,那么熟练简单的ps操作,就很重要了,虽然我们不是设计者,但是我们是具体的实现者,实现从0到1的过程,至于前端ps操作,绝大多数工作是简单的切图(抠图),测量,图片简单的处理,将图片利用web技术进行填充布局实现静态页面展现就可以了,至于,ps软件,我也只是停留在简单的使用,有时候,在一些群里,看到一些小伙伴,对于切图,有些畏惧,打开ps软件,无从下手,有时候呢,即使自己曾今,ps技术玩的很溜,但是只要一段时间没有去接触,就会很陌生,一些习以为常的技巧,忘得一干二净,非常苦恼,您将在本篇学会一些常用的奇淫绝技,完全可以胜任ps切图工作,今天,就我的学习和使用,跟大家分享一下自己的学习心得,如果你已经是老司机了,可以直接忽略,欢迎路过的老师,多提意见和指正

    02

    工地扬尘监测系统

    工地扬尘监测系统算法能够通过yolo网络框架模型,工地扬尘监测系统算法自动对区域的扬尘、粉尘颗粒进行实时监测识别,并及时进行预警,有效防止扬尘污染。工地扬尘监测系统算法中Yolo框架模型意思是You Only Look Once,它并没有真正的去掉候选区域,而是创造性的将候选区和目标分类合二为一,看一眼图片就能知道有哪些对象以及它们的位置。Yolo模型采用预定义预测区域的方法来完成目标检测,具体而言是将工地扬尘监测系统算法原始图像划分为 7x7=49 个网格(grid),每个网格允许预测出2个边框(bounding box,包含某个对象的矩形框),总共 49x2=98 个bounding box。将其理解为98个预测区,很粗略的覆盖了图片的整个区域,就在这98个预测区中进行目标检测。

    05

    基于CNN目标检测方法(RCNN,Fast-RCNN,Faster-RCNN,Mask-RCNN,YOLO,SSD)行人检测

    对于一张图片,R-CNN基于selective search方法大约生成2000个候选区域,然后每个候选区域被resize成固定大小(227×227)并送入一个CNN模型中,使用AlexNet来提取图像特征,最后得到一个4096维的特征向量。然后这个特征向量被送入一个多类别SVM分类器中,预测出候选区域中所含物体的属于每个类的概率值。每个类别训练一个SVM分类器,从特征向量中推断其属于该类别的概率大小。为了提升定位准确性,R-CNN最后又训练了一个边界框回归模型。训练样本为(P,G),其中P=(Px,Py,Pw,Ph)为候选区域,而G=(Gx,Gy,Gw,Gh)为真实框的位置和大小。G的选择是与P的IoU最大的真实框,回归器的目标值定义为:

    01

    未系安全带识别系统

    未系安全带识别系统通过python+yolo智能视频分析技术,未系安全带识别系统对画面中高空作业人员未系安全带行为进行监测,未系安全带识别系统监测到人员未穿戴安全带时,未系安全带识别系统立即通知后台人员及时处理触发告警。Yolo算法采用一个单独的CNN模型实现end-to-end的目标检测,核心思想就是利用整张图作为网络的输入,直接在输出层回归 bounding box(边界框) 的位置及其所属的类别。YOLO系列算法是一类典型的one-stage目标检测算法,其利用anchor box将分类与目标定位的回归问题结合起来,从而做到了高效、灵活和泛化性能好。在介绍Yolo算法之前,我们回忆下RCNN模型,RCNN模型提出了候选区(Region Proposals)的方法,先从图片中搜索出一些可能存在对象的候选区(Selective Search),大概2000个左右,然后对每个候选区进行对象识别,但处理速度较慢。

    00
    领券