“GIS讲堂”第九课的内容为“地图统计图的实现”,下面就课程内容做一个详细的说明。
如上图所示,一般的涉及到的地图的统计涉及到上述所展示的三个状态:1、初始化状态;2、缩放后的状态;3、点击选中显示详情状态。第一种状态下,加载统计图,一般来说,在地图上显示的统计图只是一个趋势或者示意,详细的还得去点击显示;第二种状态,随着地图的缩放,地图统计图随着地图的大小变化;第三种状态,点击选中,在信息框显示详细的统计图的信息。
因为在 github 上提交也比较多,所以想生成一下自己的 github 提交次数统计图,profile 页自带的还是不能满足我的哈哈
最近几节我们要结束掉首页,虽然首页是我们的草稿,承担了我们学习的第一步,但是确实已经占用了过多篇幅。
教程地址:http://www.showmeai.tech/tutorials/84
这里我们先要去想,数据的来源,数据来源在哪?当然是以后的各个工具的使用次数了。那么这个使用次数我们记载到哪里呢?
注意我们当前做的平台是数据构造平台,既然是数据,那么首页我们要弄成什么样呢? 最好就是 各种统计图 那种吧,看着还高大上~
前天有网友提到了这样的需求:1、地图的统计图展示;2、统计图的聚类。统计图的展示非常好理解,但是什么是统计图的聚类的?所谓统计图的聚类是按照地图等级与数据等级,实现统计图的分级展示。鉴于此,趁着这个霾天,早起来给这位网友解下惑,并在此marker一下,有相同需求的筒子可以看过来^_^
现代社会早已进入读图时代,图像在一定上程度上取代了文字,占据了主导地位。对于数据分析来说,一张清晰的可视化图表确实比纷繁复杂的数字更清晰美观。随着科技的发展以及可视化需求的急剧增大,涌现了大批的数据可视化工具,通过对比分析市面上众多的数据可视化工具之后,我们挑选了几款给大家进行参考。
Echarts相信很多小伙伴都了解过,甚至很多都已经用到过。没有了解过的小伙伴,可以先来和我一起了解一下它的作用和历史吧。ECharts,缩写来自Enterprise Charts,商业级数据图表,是由百度公司研发的(并且是开源的),它最初是为了满足公司商业体系里各种业务系统(如凤巢、广告管家等等)的报表需求,在2012年之前这些图表需求都是使用flash去实现的, 后来由于flash退出舞台,凤巢前端技术负责人的Kener-林峰在凤巢数据平台项目中尝试使用Canvas去做图表,他写了一个全新的轻量级Canvas类库ZRender,ZRender可以说是ECharts的前世。
在新的HTML5标准中,新增了一个非常重要的元素—canvas元素。使用该元素,可以在页面中直接进行各种复杂图形的制作。因此,如果使用该元素绘制统计图,比之前使用服务器端控件来生成统计图的方法更加具有优越性,因为使用了该元素之后,绘制统计图的工作是直接在客户端进行的,而不再是在服务器端所完成的了。这不仅意味着不再占用服务器端的资源,而且意味着可以直接利用客户端计算机的强大资源,绘制统计图的速度也就可以大大地得到提高了。而且,因为用来控制canvas图形绘制的脚本代码是可以被压缩的,可以被缓存的,所以也就可以
在前文中,介绍了Arcgis for js和Openlayers3中统计图的实现,在本文,书接上文,介绍在Openlayers2中,统计图的实现。
当饼状图数据比较多的时候 这个引导线显得比较杂乱无章了 这个时候需要去掉Echarts饼状图的引导线
大多数科研文章都离不开图表,尤其是图,熟悉一些绘图软件,并将图在文章和PPT中展示出来,是科研训练的重要内容。漂亮的文章配图能给自己的工作加不少分,生信宝典推出R的系列教程ggplot2高效实用指南 (可视化脚本、工具、套路、配色)讲解通过R语言绘制高颜值图。后来为了更加方便使用,生信宝典团队开发了在线绘图工具www.ehbio.com/ImageGP,支持14中常见图形和部分扩增子分析,深受欢迎,日均访问400次,累计访问数十万次,遍及世界各大洲,功能也在一直增加完善中。
作者简介:兰浩,目前在一家创业公司做前端开发。 GitHub:https://github.com/LanHao0 平时喜欢探索有意思的站点,app 和设计, 从各个地方从 everywhere 学习。 前言 最近在将平时各项的日常生活数据统计起来,并 host 到自己的站点上。平时走路有步数统计,消费有月度账单,咱们程序员是不是也应该有个属于自己的统计数据呢? 每天看代码、写代码、修 Bug,突发奇想做了这么一款小工具「代码年历」来统计自己一年提交了多少次代码。(然后就可以跟朋友炫耀了啊哈哈哈哈哈哈哈哈
这几天我们的一个学员在看到一幅论文中的一个统计图形(如下)后就@我,咨询这个图形到底怎么绘制?
Chart.js 是一个功能强大且易于使用的图表库。 支持多种类型的图表,包括折线图、柱状图、饼图、雷达图等。 Chart.js 具有简单的 API 和丰富的配置选项, 使得在 Vue 中使用它非常方便。
在前文中讲到了在Arcgis for js中统计图的实现,在本文,讲述在Openlayers3中结合highcharts实现统计图。
现在大家都把 Feed 转到 FeedSky 来烧制了,FeedSky 好像服务器有点变得不稳定,今天下午3点多的时候就崩溃了一次,然后到现在位置,实时统计统计还是有问题,现在只能实时统计下午3点多,可能服务器有点不负重荷,不过如何我个人还是看到 FeedSky 的,今天就结合自己的经验给大家介绍下 FeedSky 的后台功能,如有不对,欢迎指出。
今天分享的内容我想每一位对开源感兴趣的朋友都或多或少的知道, 也是我在做开源项目中用到的一些强大的工具, 可以让我们的开源项目和 github 主页更加富有展现力, 最后会分享一个我自己的 github 主页的 readme.md, 大家可以参考学习一下.
一:柱状图改变颜色 图片.png 代码: <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <titl
最近做的项目需要用到数据分析,图表显示,之前做项目的时候用到过highcharts,不过也只是简单的会用而已,然后再网上查了查highcharts的优点:
上节之后,有不少小伙伴问,如果已经跟了8-12章的 首页数据统计图 的,要删除么?
接着来做这个首页的收尾部分。按照上节课的结尾,我们需要进行新导入组件的三个本地化配置。
在日常开发工作和自己学习跑demo的时候,往往都需要快速构建一个springboot基础工程。除了用IDEA开发工具构建,更多就是用Spring Initializr来生成,但用的时间长了发现,它也就仅仅只能帮我们引入一些必要的jar包,其他插件轮子还是得自己配置。
停电区域是指供电公司在某一天的某些区域的台区进行停电,台区的下属表箱均受到影响。这是一个地域性问题,所以通过在地图上进行标识这些区域,将数据可视化地展示到分析人员面前,可以很直观看到当天停电影响区域,极大地方便了后续工作的展开。
参考链接:echarts官网:http://echarts.baidu.com/ 原型图(效果图): 图片.png 代码: <!DOCTYPE html> <html> <head>
背景:网络管理员小李在某电子商务公司工作,日常工作是负责有效地监控和分析网站流量,确保网站的稳定性和安全性。
前端时常会遇到这样的问题,有一个单独的模块用作统计图,将多个折线或者柱状图,混合使用,下面的例子是用ajax+json模拟了调用接口实现echarts多个统计图显示。 样式布局暂时就不放在上面了,以下是从项目里面复制过来的一个小的demo,代码仅供参考。
设想一个场景,假如需要提升 webpack 编译速度,或者优化编译产物大小,应该从何下手?别急,在采用具体手段前,可以先花点时间了解当前的编译执行情况,确定性能瓶颈,有的放矢!今天就给大家分享一些 webpack 构建过程的分析诊断方法和工具,基于这些工具,你可以:
示例代码 <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title></title> </head> <body> 02
笔者最近看到很多公众号在推荐QingScan这款扫描器平台,也好奇了起来,花了半小时将QingScan搭建了起来;
今天要跟大家分享的专题是水晶易表选择器的高级用法——向下钻取与动态可见性。 本案例紧接系列6——熟练统计图中的钻取功能一篇,不同的是这里通过开启标签菜单的动态可见性控制四个图表的可见性,每个图表又通过
今天在查阅资料的时候,偶尔发现一个超好用的科研工具-「rempsyc」,其提供多个函数可以将学术论文编写过程中的统计图表一键美化、常见统计图形绘制等,简直就是科研党的首选工具。
众所周知,数据统计图是论文或学术PPT的重要组成部分,而GraphPad Prism制作统计图是很便捷的。我强烈推荐大家使用。
这里记录一段时间我在互联网上看到的有意思的内容与信息,防止它们在我的脑袋里走丢了。
BI是Business Intelligence的英文缩写,译作商业智能,又称商业智慧或商务智能,指用现代数据仓库技术、线上分析处理技术、数据挖掘和数据展现技术进行数据分析以实现商业价值。
大数据的出现使数据可视化可谓发挥到了极致。数据可视化主要是为了直观,实时地查看数据变化并做出第一反馈。正因为人们分析了大量数据,所以可视化的数据展示可以使用户很直接的了解并感受到大数据带来的震撼。
本系统采用前后端分离的开发模式,前端使用Vue.js框架进行开发,后端使用Spring Boot框架,数据库采用MySQL。系统实现了家政服务的在线预约、服务评价、人员管理、订单管理等功能,为用户提供了便捷的家政服务体验。
(2).Jfreechart打造专业图表-原来Jfreechart也可以这么玩,可不是Highcharts 哦
一、引言 许多科学领域的数据分析工作已经变得越来越复杂和灵活,这也意味着即使相同的数据,不同研究者采用的处理方法和步骤也可能不同,那么得到的结果也不尽然一致。近期,Nature杂志发表一篇题目为《Variability in the analysis of a single neuroimaging dataset by many teams》的研究论文,该研究通过要求70个独立团队分析相同的fMRI数据集,测试相同的9个预先假设,来评估功能磁共振成像(fMRI)结果的这种灵活性的效果。分析方法的灵活性体现在没有两个团队选择相同的方式来分析数据。这种不确定性导致了假设检验结果的巨大差异。报告结果的差异与分析方法的多个方面有关。研究人员的预测市场显示,即使是了解数据集的研究人员,也过高估计了重要发现的可能性。该研究结果表明,分析的灵活性可以对科学结论产生重大影响,并在fMRI分析中识别出可能与变异性有关的因素。该研究的结果强调了验证和共享复杂分析工作的重要性,并说明了对相同数据执行和报告多重分析的必要性。此外,该研究还讨论了可用于减轻与分析变异性有关的问题的潜在方法。 二、背景 科学领域的数据分析工都有着大量的分析步骤,这些步骤涉及许多可能的选择。模拟研究表明,分析选择的不同可能对结果产生重大影响,但其程度及其在实践中的影响尚不清楚。最近的一些心理学研究通过使用多个分析人员的方法解决了这一问题。在这种方法中,大量的小组分析同一数据集,研究发现分析小组的行为结果有很大的差异。在神经影像学分析复制和预测研究(NARPS)中,该研究将类似的方法应用于分析工作流程复杂且变化多样fMRI领域。研究者的目标是以最高的生态效度来评估分析灵活性对fMRI结果的实际影响程度。此外,研究者们使用预测市场(Prediction markets)来测试该领域的同行是否能够预测结果以及估计该领域研究人员对分析结果变异性程度的信念。 三、结果 1.跨团队的结果变异性 NARPS的第一个目标是评估分析相同数据集的独立团队的结果在现实中的变异性。该数据集包括来自108个被试的fMRI数据,每个被试执行一个任务两个版本中的一个,该任务之前被用于研究风险决策。这两个版本的设计是为了解决在任务中关于增益和损耗分布对神经活动影响的争论(数据信息见原文辅助材料)。。 在向70个团队(其中69个团队以前发表过fMRI)提供了原始数据和可选的数据集预处理版本(使用fMRIPrep)后,他们被要求对数据进行分析,以测试9个事先假设(表1),每个假设都包含了与任务特定特征相关的特定脑区活动的描述。分析时间为100天的,各小组需要在全脑校正分析(Whole-brain-corrected analysis)的基础上,报告每个假设是否得到了支持(是或否)。此外,每个小组提交了一份详细的分析方法报告,以及支持每个假设检验的无阈值和有阈值统计图(表2,3a)。为了进行生态效度研究,给这些分析团队唯一的指令就是像往常在自己的实验室里一样进行分析工作,并根据他们自己的标准报告二元决策,即假设中描述的特定区域的全脑校正结果。在预测市场关闭之前,数据集、报告和集合都是保密的。
今天是读《pyhton数据分析基础》的第14天,今天读书笔记的内容为使用matplotlib模块绘制常用的统计图。 模块概括 matplotlib 是最基础的绘图模块,pandas和seaborn的绘图功能的使用依赖于matplotlib。 条形图 #绘制柱形图 from matplotlib import pyplot as plt #绘图数据 x=["a","c","d","e","b"] y=[11.5,18.6,17.5,14.3,10.8] #创建基础图 fig=plt.figure() #
前言 数据可视化,是指将相对晦涩的的数据通过可视的、交互的方式进行展示,从而形象、直观地表达数据蕴含的信息和规律。 早期的数据可视化作为咨询机构、金融企业的专业工具,其应用领域较为单一,应用形态较为保守。步入大数据时代,各行各业对数据的重视程度与日俱增,随之而来的是对数据进行一站式整合、挖掘、分析、可视化的需求日益迫切,数据可视化呈现出愈加旺盛的生命力,表现之一就是视觉元素越来越多样,从朴素的柱状图/饼状图/折线图,扩展到地图、气泡图、树图、仪表盘等各式图形。表现之二是可用的开发工具越来越丰富,从专业的
据可视化是将数据以图形化、可视化的方式呈现,让数据更加直观、易于理解。目前市场上有许多数据可视化工具,本篇文章将为大家推荐30个数据可视化超级工具,并对每个工具的特点进行介绍。
EMF全称“Enhanced MetaFile”,这种格式是微软为了弥补WMF (Windows Metafile Format)格式的不足而开发的一种扩展图元文件格式,属于矢量文件格式。
那么,这个统计图的开始时间是如何计算的呢?下面我就简单的讲解下,我的JavaScript知识目前学的比较浅,献丑了。
领取专属 10元无门槛券
手把手带您无忧上云