首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    常见公开人脸数据集的获取和制作自定义人脸数据集

    前言开发人脸识别系统,人脸数据集是必须的。所以在我们开发这套人脸识别系统的准备工作就是获取人脸数据集。本章将从公开的数据集到自制人脸数据集介绍,为我们之后开发人脸识别系统做好准备。...公开人脸数据集公开的人脸数据集有很多,本中我们就介绍几个比较常用的人脸数据集。...CelebA人脸数据集官方提供的下载地址:链接:https://pan.baidu.com/s/1zw0KA1iYW41Oo1xZRuHkKQ 密码:zu3w该数据集下载后有3个文件夹,Anno文件夹是存放标注文件的...有些图片有多个标注数据,因为这个数据集的图片中多人脸的,跟前面的数据集不同,前面的都是一张图片只有一张人脸。...js = json.loads(res.text) # 获取json中的明星数据 results = js.get('data')[0].get('result

    5K10

    paddle深度学习8 自定义数据集

    除了Paddle中一些已经包含的常用数据集,在实际的深度学习项目中,经常需要使用自定义的数据集(以便灵活地使用一些其它地外部数据集)进行训练和测试。...PaddlePaddle 提供了灵活的工具来加载和处理自定义数据集。下面我们将详细介绍如何使用 PaddlePaddle 加载和使用一个简单的二维空间点的二分类数据集。...【准备自定义数据集】假设要完成一个二维空间点的二分类任务,数据集的结构如下:l 每个样本由两个浮点数 (x1, x2) 组成,表示二维空间中的一个点。...】PaddlePaddle 提供了 paddle.io.Dataset 类,我们可以通过继承这个类来定义自己的数据集import paddleclass MyDataset(paddle.io.Dataset...】定义好数据集后,惯用的做法是使用 paddle.io.DataLoader 来加载数据,需要把数据集转换为DataLoader类型# 创建 DataLoadertrain_loader = paddle.io.DataLoader

    10710

    PyTorch 中自定义数据集的读取方法

    显然我们在学习深度学习时,不能只局限于通过使用官方提供的MNSIT、CIFAR-10、CIFAR-100这样的数据集,很多时候我们还是需要根据自己遇到的实际问题自己去搜集数据,然后制作数据集(收集数据集的方法有很多...这里只介绍数据集的读取。 1....自定义数据集的方法: 首先创建一个Dataset类 [在这里插入图片描述] 在代码中: def init() 一些初始化的过程写在这个函数下 def...len() 返回所有数据的数量,比如我们这里将数据划分好之后,这里仅仅返回的是被处理后的关系 def getitem() 回数据和标签补充代码 上述已经将框架打出来了,接下来就是将框架填充完整就行了...if mode=='train': self.images=self.images[:int(0.6*len(self.images))] # 将数据集的60%

    93330

    【猫狗数据集】定义模型并进行训练模型

    2020.3.10 发现数据集没有完整的上传到谷歌的colab上去,我说怎么计算出来的step不对劲。 测试集是完整的。...顺便提一下,有两种方式可以计算出数据集的量: 第一种:print(len(train_dataset)) 第二种:在../dog目录下,输入ls | wc -c 今天重新上传dog数据集。.../s/1l1AnBgkAAEhh0vI5_loWKw 提取码:2xq4 之前准备好了数据集: 创建数据集:https://www.cnblogs.com/xiximayou/p/12398285.html...读取数据集:https://www.cnblogs.com/xiximayou/p/12422827.html 这节我们要定义模型然后开始进行训练啦。...train_loader,test_loader:就不必多说了,用于加载数据集的 train_data,test_data:传过去这个是为了获取数据集的长度。

    68020

    在自定义数据集上微调Alpaca和LLaMA

    本文将介绍使用LoRa在本地机器上微调Alpaca和LLaMA,我们将介绍在特定数据集上对Alpaca LoRa进行微调的整个过程,本文将涵盖数据处理、模型训练和使用流行的自然语言处理库(如Transformers...,虽然负面评论较少,但是可以简单的当成平衡数据来对待: df.sentiment.value_counts().plot(kind='bar'); 构建JSON数据集 原始Alpaca存储库中的dataset5...数据集加载 现在我们已经加载了模型和标记器,下一步就是加载之前保存的JSON文件,使用HuggingFace数据集库中的load_dataset()函数: data = load_dataset("json...第二个函数tokenize接收生成的提示,并使用前面定义的标记器对其进行标记。它还向输入序列添加序列结束标记,并将标签设置为与输入序列相同。...数据准备的最后一步是将数据集分成单独的训练集和验证集: train_val = data["train"].train_test_split( test_size=200, shuffle=

    1.4K50

    在PyTorch中构建高效的自定义数据集

    我特别喜欢的一项功能是能够轻松地创建一个自定义的Dataset对象,然后可以与内置的DataLoader一起在训练模型时提供数据。...扩展数据集 让我们扩展此数据集,以便它可以存储low和high之间的所有整数。...如果对矩阵行进行索引,则将在该索引处获得值为1的行向量,这是独热向量的定义! ? 因为我们需要将三个数据转换为张量,所以我们将在对应数据的每个编码器上调用to_one_hot函数。...通过使用内置函数轻松拆分自定义PyTorch数据集来创建验证集。 事实上,您可以在任意间隔进行拆分,这对于折叠交叉验证集非常有用。我对这个方法唯一的不满是你不能定义百分比分割,这很烦人。...至少子数据集的大小从一开始就明确定义了。另外,请注意,每个数据集都需要单独的DataLoader,这绝对比在循环中管理两个随机排序的数据集和索引更干净。

    3.6K20
    领券