在 Java 中,让线程休眠的方法有很多,这些方法大致可以分为两类,一类是设置时间,在一段时间后自动唤醒,而另一个类是提供了一对休眠和唤醒的方法,在线程休眠之后,可以在任意时间对线程进行唤醒。
相信大家对Java中的Lock锁应该不会陌生,比如ReentrantLock,锁主要是用来解决解决多线程运行访问共享资源时的线程安全问题。那你是不是很好奇,这些Lock锁api是如何实现的呢?本文就是来探讨一下这些Lock锁底层的AQS(AbstractQueuedSynchronizer)到底是如何实现的。
sleep(休眠) 和 wait(等待) 方法是 Java 多线程中常用的两个方法,它们有什么区别及一些该注意的地方有哪些呢?下面给大家一一分解。
线程有如果按照java.lang.Thread.State枚举方式来考虑,一共提供了6中状态
多线程编程是现代软件开发中的常见需求,而线程的控制和协作则是其中的关键挑战之一。在Java中,有两种主要的方法可以用来让线程暂停执行:Thread类的sleep()方法和对象的wait()方法。本文将深入研究这两种方法,分析它们的区别,以及在不同情况下何时使用哪种方式来控制线程的执行。
可以看出,线程1尝试获取锁2,线程2尝试获取锁1,但是二者并没有获取到对方的锁;这就发生了所谓的“死锁”!
CyclicBarrier是一个同步辅助类,它允许一组线程互相等待,直到所有线程都到达某个公共屏障点(也可以叫同步点),即相互等待的线程都完成调用await方法,所有被屏障拦截的线程才会继续运行await方法后面的程序。在涉及一组固定大小的线程的程序中,这些线程必须不时地互相等待,此时CyclicBarrier很有用。因为该屏障点在释放等待线程后可以重用,所以称它为循环的屏障点。CyclicBarrier支持一个可选的Runnable命令,在一组线程中的最后一个线程到达屏障点之后(但在释放所有线程之前),该命令只在所有线程到达屏障点之后运行一次,并且该命令由最后一个进入屏障点的线程执行。
假设有个需求: 解析一个Excel里多个sheet的数据,此时可以考虑使用多线程,每个线程解析一个sheet里的数据,等到所有的sheet都解析完之后,程序需要提示解析完成。在这个需求中,要实现主线程等待所有线程完成sheet的解析操作。
就像我们每天去到公司一样,先打开电脑,在电脑开机过程中可以去接点水喝,而不用等待电脑开机再去接水喝。
考虑一个场景,轮流打印0-100以内的技术和偶数。通过使用 synchronize 的 wait,notify机制就可以实现,核心思路如下: 使用两个线程,一个打印奇数,一个打印偶数。这两个线程会共享一个数据,数据每次自增,当打印奇数的线程发现当前要打印的数字不是奇数时,执行等待,否则打印奇数,并将数字自增1,对于打印偶数的线程也是如此
Handler中的消息队列如上图所示,是一个单链表,各个消息按照执行时间先后排列,消息类型分为三种:普通消息(normal)、屏障消息(barrier)、异步消息(async)。
a 、 moniter 继承的积累为object,sleep 继承 thread 类
在线程的生命周期中,要经过新建new、就绪runnable、运行running、阻塞blocked和死亡dead 5种状态。
在线程的生命周期中,不同状态之间切换时,可以通过调用sleep()、wait()、join()、yield()等方法进行线程状态控制,针对这一部分知识点,面试官们也会做做文章,比如问你这些方法的作用以及之间的区别。
park方法有两个参数来控制休眠多长时间,第一个参数isAbsolute表示第二个参数是绝对时间还是相对时间,单位是毫秒。
我正在学习 Zephyr,一个很可能会用到很多物联网设备上的操作系统,如果你也感兴趣,可点此查看帖子zephyr学习笔记汇总。
sleep()方法(休眠)是线程类(Thread)的静态方法,调用此方法会让当前线程暂停执行指定的时间,将执行机会(CPU)让给其他线程,但是对象的锁依然保持,因此休眠时间结束后会自动恢复(线程回到就绪状态,请参考第66题中的线程状态转换图)。wait()是Object类的方法,调用对象的wait()方法导致当前线程放弃对象的锁(线程暂停执行),进入对象的等待池(wait pool),只有调用对象的notify()方法(或notifyAll()方法)时才能唤醒等待池中的线程进入等锁池(lock pool),如果线程重新获得对象的锁就可以进入就绪状态。
源码阅读是基于JDK7,本篇主要涉及CyclicBarrier常用方法源码分析。文中代码若格式排版不对,可点击底部的阅读原文阅读。 1.概述 CyclicBarrier是一个同步辅助类,它允许一组线程互相等待,直到所有线程都到达某个公共屏障点(也可以叫同步点),即相互等待的线程都完成调用await方法,所有被屏障拦截的线程才会继续运行await方法后面的程序。在涉及一组固定大小的线程的程序中,这些线程必须不时地互相等待,此时CyclicBarrier很有用。因为该屏障点在释放等待线程后可以重用,所以称它为循
NSThread NSThread封装性最差,最偏向于底层,主要基于thread使用,生命周期需要手动管理,所以这套方案也是偶尔用用,比如 [NSThread currentThread],它可以获取当前线程类,你就可以知道当前线程的各种属性,用于调试十分方便。
线程的runnable状态是从虚拟机的角度来看的,表示这个线程正在运行。但是处于Runnable状态的线程不一定真地消耗CPU。处于Runnable的线程只能说明该线程没有阻塞在java的wait或者sleep方法上,同时也没等待在锁上面。但是如果该线程调用了本地方法,而本地方法处于等待状态,这个时候虚拟机是不知道本地代码中发生了什么,此时尽管当前线程实际上也是阻塞的状态,但实际上显示出来的还是runnable状态,这种情况下是不消耗CPU的。
除了 InterruptedException 中断异常,另外还有三个中断相关的方法,三个方法都与线程相关。
1.并发与并行🌭 并发: 指两个或多个事件在同一个时间段内发生。 并行: 并行:指两个或多个事件在同一时刻发生(同时发生)。 2.线程与进程🌭 进程:🍔 是指一个内存中运行的应用程序,每个进程都有一个独立的内存空间,一个应用程序可以同时运行多个进程;进程也是程序的一次执行过程,是系统运行程序的基本单位;系统运行一个程序即是一个进程从创建、运行到消亡的过程。 线程:🍔 线程是进程中的一个执行单元,负责当前进程中程序的执行,一个进程中至少有一个线程。一个进程中是可以有多个线程的,这个应用程序也可以称
线程在调用lock方法来获得另一个线程所持有的锁的时候,很可能发生阻塞。应该更加谨慎地申请锁。tryLock方法试图申请一个锁,在成功获得锁后返回true,否则,立即返回false,而且线程可以立即离开去做其他事。
本文讲解了 Java 中线程休眠的语法和应用场景,并给出了样例代码。线程休眠是一种暂停线程执行的方法。当线程调用 Thread.sleep() 方法时,它会进入指定的时间段的休眠状态,暂停当前线程的执行,让出 CPU 资源给其他线程。
前文「JDK源码分析-AbstractQueuedSynchronizer(1)」初步分析了 AQS,其中提到了 Node 节点的「独占模式」和「共享模式」,其实 AQS 也主要是围绕对这两种模式的操作进行的。
CountDownLatch 是多线程控制JUt(java.util.concurrent.CountDownLatch)的一个工具类,它被称为 门阀 、 计数器 或者 闭锁 。这个工具经常用来用来协调多个线程之间的同步,或者说起到线程之间的通信(而不是用作互斥的作用)
一切互斥操作的依赖是 自旋锁(spin_lock),互斥量(semaphore)等其他需要队列的实现均需要自选锁保证临界区互斥访问。
Swift3.0相关代码已在github上更新。之前关于iOS开发多线程的内容发布过一篇博客,其中介绍了NSThread、操作队列以及GCD,介绍的不够深入。今天就以GCD为主题来全面的总结一下GCD的使用方式。GCD的历史以及好处在此就不做过多的赘述了。本篇博客会通过一系列的实例来好好的总结一下GCD。GCD在iOS开发中还是比较重要的,使用场景也是非常多的,处理一些比较耗时的任务时基本上都会使用到GCD, 在使用是我们也要主要一些线程安全也死锁的东西。 本篇博客中对iOS中的GCD技术进行了较为全面的总
本篇内容基于JDK7,涉及Condition常用方法。 1.概述 Condition接口位于java.util.concurrent.locks包下,实现类有 AbstractQueuedLongSynchronizer.ConditionObject和 AbstractQueuedSynchronizer.ConditionObject。Condition将Object监视器方法(wait、notify和 notifyAll)分解成截然不同的对象,以便通过将这些对象与任意Lock实现组合使用。其中,Loc
Semaphore是基于AQS实现的信号量,这个类主要用于控制线程的访问数,或者对并发的数量进行控制。以将资源的被获取方的速度限制在特定的值内。 其类结构如下:
synchronized 结合 java.lang.Object 对象中的wait()、notify()、notifyAll()。
CountDownLatch是并发容器JUC下的类,允许一个或多个线程等待直到在其他线程中执行的一组操作完成的同步辅助。 使用给定的计数初始化CountDownWatch。由于调用了countdown()方法,wait方法将一直阻塞,直到当前计数为零。之后,所有等待线程都被释放,任何随后的wait调用都会立即返回。这是一种一次性现象——计数无法重置。如果您需要重置计数的版本,请考虑使用cyclicBarrier。 CountDownLatch是一种通用的同步工具,可用于多种用途。用一个计数初始化的Countdownloatch用作一个简单的开/关闩锁。或:所有调用的线程都等待在入口等待,直到被调用的线程打开为止。countDown()。一个CountDownLatch初始化为N可以用来做一个线程等待,直到N线程完成一些动作,或某些动作已经完成N次。 Countdownloatch的一个有用属性是,它不要求调用countdown的线程在继续之前等待计数达到零, 它只是防止任何线程在所有线程都可以通过之前继续经过等待。 CountDownLatch 官方API
定义:多个线程之间的操作无论采用何种执行时序或交替方式,都要保证不变性条件不被破坏
在上一遍文章中讲到多线程基础,在此篇文章中我们来学习C#里面Thread类。Thread类是在.net framework1.0版本中推出的API。如果对线程的概念还不太清楚的小伙伴请阅读我的上一遍文章:多线程系列(一),多线程基础
Condition接口位于java.util.concurrent.locks包下,实现类有 AbstractQueuedLongSynchronizer.ConditionObject和 AbstractQueuedSynchronizer.ConditionObject。Condition将Object监视器方法(wait、notify和 notifyAll)分解成截然不同的对象,以便通过将这些对象与任意Lock实现组合使用。其中,Lock替代了synchronized方法的使用及作用,Condition替代了Object监视器方法的使用及作用。Condition的await方法代替Object的wait;Condition的signal方法代替Object的notify方法;Condition的signalAll方法代替Object的notifyAll方法。Condition实例在使用时需要绑定到一个锁上,可以通过newCondition方法获取Condition实例。Condition实现可以提供不同于Object监视器方法的行为和语义,比如受保证的通知排序,或者在执行通知时不需要保持一个锁。
Java中的Object类是所有类的父类,鉴于继承机制,Java把所有的类都需的方法放在了Object类里面,其中就包含要说的通知与等待。
java思维导图 xmind导图配合精美文章,可视化学习,让java不再难懂。 进程与线程 进程 是具有一定独立功能的程序关于某个数据集合上的一次运行活动,是操作系统进行资源分配和调度的一个独立单位; 进程在执行时通常拥有独立的内存单元 线程 是进程的一个实体,是CPU调度和分派的基本单位,是比进程更小的能独立运行的基本单位。 线程的划分尺度小于进程,这使得多线程程序的并发性高; 线程之间可以共享内存 使用多线程的编程通常能够带来更好的性能和用户体验,但是多线程的程序对于其他程序是不友好的,因为它可能占用了
从公平的角度来说,Java 中的锁总共可分为两类:公平锁和非公平锁。但公平锁和非公平锁有哪些区别?孰优孰劣呢?在 Java 中的应用场景又有哪些呢?接下来我们一起来看。
其中 stop 方法为 @Deprecated 修饰的过期方法,也就是不推荐使用的过期方法,因为 stop 方法会直接停止线程,这样就没有给线程足够的时间来处理停止前的保存工作,就会造成数据不完整的问题,因此不建议使用。而自定义中断标识也有一些问题,所以综合来看,interrupt 方法才是最理想的停止线程的方法,接下来我们一起来看它们的具体差异。
LockSupport位于java.util.concurrent(简称juc)包中,算是juc中一个基础类,juc中很多地方都会使用LockSupport,非常重要,希望大家一定要掌握。
并发编程的特点是:可以将程序划分为多个分离且独立运行的任务,通过线程来驱动这些独立的任务执行,从而提升整体的效率。下面提供一个基础的演示案例。
线程的生命周期指的是线程从创建到销毁的整个过程,通常情况下线程的生命周期有以下 5 种:
除了原子操作,中断屏蔽,自旋锁以及自旋锁的衍生锁之外,在Linux内核中还存在着一些其他同步互斥的手段。
比如说,当线程 A 正在运行时,线程 B 可以通过中断线程 A,来指示线程 A 停止它正在执行的操作。但是线程 A 如何响应线程 B 的中断,是需要依靠线程 A 的代码处理逻辑来做决定的。
RunLoop 简介 运行循环,在程序运行过程中循环做一些事情(如接收消息、处理消息、休眠等待等); RunLoop是通过内部维护的事件循环来对事件/消息进行管理的一个对象; RunLoop不是一个简单的do...while循环,它涉及到用户态和内核态之间的切换。 事件循环 事件循环就是对事件/消息进行管理,事件循环可以达到: 没有消息需要处理时,休眠线程以避免资源占用。从用户态切换到内核态,等待消息; 有消息需要处理时,立刻唤醒线程,回到用户态处理消息; 通过调用mach_msg()函数来转移当前线程
进程是指在系统中正在进行的一个应用程序;每个进程之间是独立的,每个进程均运行在其专用且受保护的内存空间内。
同一时刻 , 多个任务交替执行, 造成一种‘貌似同时’ 的错觉, 简单的说,单核cpu实现的多任务就是并发
此篇博客所有源码均来自JDK 1.8 在前面提到过,AQS是构建Java同步组件的基础,我们期待它能够成为实现大部分同步需求的基础。AQS的设计模式采用的模板方法模式,子类通过继承的方式,实现它的抽象方法来管理同步状态,对于子类而言它并没有太多的活要做,AQS提供了大量的模板方法来实现同步,主要是分为三类:独占式获取和释放同步状态、共享式获取和释放同步状态、查询同步队列中的等待线程情况。自定义子类使用AQS提供的模板方法就可以实现自己的同步语义。 独占式 独占式,同一时刻仅有一个线程持有同步状态。 独占式同
futex全称是fast user-space locking,也就是快速用户空间锁,在linux下使用C语言写多线程程序时,在需要线程同步的地方会经常使用pthread_mutex_lock()函数对临界区进行加锁,如果加锁失败线程就会挂起,这就是互斥锁。但是pthread_mutex_lock并不是立即进行系统调用,而是首先在用户态进行CAS操作,判断其它线程是否已经获取了锁,如果锁被其它线程获取了,再进行系统调用sys_futex(),将当前线程挂起。futex可以用在多线程程序中,也可以用在多进程程序中。互斥变量是一个32位的值。
领取专属 10元无门槛券
手把手带您无忧上云