js浮点数精度丢失的问题及解决 说明 1、在数学计算中,小数会有一定的误差,这是计算机本身的bug,不仅是js语言,其他语言也有这个问题。... = '张三' - 100;//当某个表达式无法计算(计算错误时),会得到NaN console.log ( num ); //NaN console.log ( typeof ...(课后了解即可)number浮点数(小数)精度丢失 //小数在进行数学计算时,会有一定的误差,这是计算机本身的bug,不仅是js语言,其他语言也有这个问题 //解决方案:不要让两个小数比较大小...console.log ( 0.4 + 0.5 ); //0.9 console.log ( 1.1 - 0.2 ); //0.9000000000000001 以上就是js...浮点数精度丢失的问题及解决,希望对大家有所帮助。
在百思不得其解下 ,我查阅各个文章都没有很好的 专门关于 浮点精度缺失 导致 预期结果 的文章 所以在此记录, 结果: 其实在C语言中浮点型是有误差的,会导致结果不一样, 比如我们不可以直接把两个浮点型用...= 比较的(注:只要是关于大小比较都不可以),因为小数位是不一样的,所以再等号上要比较浮点型解决方法是 abs(x-y) 精度问题解决了,对于其他情况下举一反三。...对应原题例子: 比如这样一个情况 1/3 - 1/3 按照数学知识 应该为0 但如果在设置中精度不同, 如在不同精度下 结果会为 一个为0.3333333一个为0.3333那结果是0.0000333...就不为0, 那么如果此时判断语句为if Δ<0 就不能达到预期效果了,所以为了避免这种情况,解决办法: 设置一个足够小的值(一般情况用10e-6)当作0,使其作为浮点型之间判断大小的准则,就可以避免出现精度损失导致判断语句分支错误或达不到所要效果
由于接触JS不久,关于JS的浮点数的计算更是之前没有用过,这次写JS项目发现的这个问题:0.1+0.2=0.3000000000004,为什么会出现这么奇怪的问题呢 ?...在网上找了一些资料,JS作为解释性语言,直接计算会有浮点数精度丢失问题。 门弱类型语言的JavaScript ,从设计思想上就没有对浮点数有个严格的数据类型。 解决方案: 一....有种最简单的解决方案,就是给出明确的精度要求,在返回值的过程中,计算机会自动四舍五入,比如: var numA = 0.1; var numB = 0.2; alert( parseFloat((numA...在浮点数计算的时候,很多时候产生的都是这种极限数据,如果要精确进行整数转换,要放大的倍数过大。...,我们要把需要计算的数字乘以 10 的 n 次幂,换算成计算机能够精确识别的整数,然后再除以 10 的 n 次幂,大部分编程语言都是这样处理精度差异的,我们就借用过来处理一下 JS 中的浮点数精度误差。
贴代码: // 自定义高精度浮点数运算 // 对象格式写法 var float_calculator={ /** * 1.记录两个运算数小数点后的位数 * 2.将其转化为整数类型进行运算...Number(arg2.toString().replace(".","")); } return (r1/r2)*Math.pow(10,t2-t1); } }; 测试: alert("高精度加法计算结果...: "+float_caculator.add(1.11444,23.45674231)+ "\njs计算结果: "+(1.11444+23.45674231)); alert("高精度减法计算结果:..."+float_caculator.minus(1.11444,23.45674231)+ "\njs计算结果: "+(1.11444-23.45674231)); alert("高精度乘法计算结果...: "+float_caculator.mul(1.11444,23.45674231)+ "\njs计算结果: "+(1.11444*23.45674231)); alert("高精度除法计算结果:
一看是一个效果,精度都会缺失。...而在存储浮点型数据时,会分为三部分进行存储: 符号位(Sign): 0代表正,1代表为负 指数位(Exponent):用于存储科学计数法中的指数数据,并且采用移位存储 尾数部分(Mantissa)...,小数的二进制有时也是不可能精确的,就如同十进制不能准确表示1/3,二进制也无法准确表示1/10,而double类型存储尾数部分最多只能存储52位,于是,计算机在存储该浮点型数据时,便出现了精度丢失。...而在进行浮点类数据计算的时候,浮点参与计算,会左移或右移n位,直到小数点移动到第一个有效数字的右边。...于是11.9在转化为二进制后 小数点左移3位,就得到1. 011 11100110011001100110(精度丢失2) 于是最终浮点型运算出现了精度丢失误差。
在知乎上上看到如下问题: 浮点数精度问题的前世今生? 1.该问题出现的原因 ? 2.为何其他编程语言,比如java中可能没有js那么明显 3.大家在项目中踩过浮点数精度的坑?...再看到这几篇长文《[ JS 基础 ] JS 浮点数四则运算精度丢失问题 (3)》、《JavaScript数字精度丢失问题总结》、《细说 JavaScript 七种数据类型》,略有所悟,整理如下: 这个问题并不只是在...浮点数丢失产生原因 JavaScript 中的数字类型只有 Number 一种,Number 类型采用 IEEE754 标准中的 “双精度浮点数” 来表示一个数字,不区分整数和浮点数 (js位运算或许是为了提升...一般用于高精度计算。比如会计制度经常需要对很长的数字串作准确的计算。相对于一般的浮点式记数法,采用BCD码,既可保存数值的精确度,又可免去使电脑作浮点运算时所耗费的时间。...JS数字精度丢失的一些典型问题 两个简单的浮点数相加 0.1 + 0.2 !
在使用flask_sqlachemy时,给price字段选择了Float类型,数据库用的mysql,生成数据库表后,发现
2.为何其他编程语言,比如java中可能没有js那么明显 3.大家在项目中踩过浮点数精度的坑? 4.最后采用哪些方案规避这个问题的? 5.为何采用改方案?...浮点数丢失产生原因 JavaScript中的数字类型只有 Number 一种,Number 类型采用 IEEE754 标准中的 “双精度浮点数” 来表示一个数字,不区分整数和浮点数 (js位运算或许是为了提升...一般用于高精度计算。比如会计制度经常需要对很长的数字串作准确的计算。相对于一般的浮点式记数法,采用BCD码,既可保存数值的精确度,又可免去使电脑作浮点运算时所耗费的时间。...JS数字精度丢失的一些典型问题 两个简单的浮点数相加 0.1 + 0.2 !...:小数计算不准确+浮点数精度丢失根源 如有不妥之处,请到本人源站留言。
问题不论大家使用的是什么编程语言想必都知道浮点数在计算机中存在一定的精度问题,特别是有float类型的编程语言中,大部分编程都是建议直接使用更高精度的double类型。...我的天,这简直有违天道的事情,但其实这在计算机中是正常的,要理解这个问题,我们就要先从浮点数是怎样用二进制表示的,然后它是怎么被存储在计算机内的,然后我们再来讨论如何尽可能的去规避这种精度问题的出现。...浮点数的二进制表示浮点型数在内存中的存储和整形还是有很大的差异的下面先给出浮点型存入内存的规则:根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式。...如何尽可能规避这些精度问题使用高精度库在需要高精度计算的场合,使用专门的高精度数学库,如 Python 的 decimal 模块或 Java 的 BigDecimal 类。...,可以选择使用更高精度的浮点数类型(如 double 而不是 float),以减少精度损失。
Python中,浮点数运算,经常会碰到如下情况: 出现上面的情况,主要还是因浮点数在计算机中实际是以二进制保存的,有些数不精确。...0.1是十进制,转化为二进制后它是个无限循环的数: 0.00011001100110011001100110011001100110011001100110011001100 而python是以双精度...(64)位来保存浮点数,多余的位会被截掉,所以看到的是0.1,但在电脑上实际保存的已不是精确的0.1,参与运算后,也就有可能点误差,特别是金融邻域里面,对精度更是要求更高,如何在Python中获取特定位数精度值
问题描述 程序计算是一个很普遍的存在,但是语言的计算精度却是一个困扰人的问题,比说说,计算0.1+0.2,0.3+0.6,不用计算机计算,你用口算当然可以计算出分别为0.3和0.9,但是计算机计算的结果却不一样...这是加法中存在问题,乘法当中依然存在,你可以用程序计算一下4330.61*100,计算结果依然是不准确。 ? 当着写计算结果应用到金钱的计算上的时候,就会出现大的问题,N笔交易以后产生的效果更大。...至于产生的原因可以参考=>js浮点数精度问题的前世今生? 解决方法 浮点数计算本身就有精度缺失的问题,要解决他首先就不进行浮点数运算,就是将其转变为整数,然后再进行除法,换算为浮点数。...因为后面需要进行除法,所以这里的小数点位数需要相加,然后将字符串化后的两个值去除小数点,在进行数字化,此时两个数字都已经变成了整数,此时在进行乘法运算,得出精确的结果,之后再除以因为去除小数点放大的倍数,由此得出精确地计算结果
引言--浮点数精度问题是指在计算机中使用二进制表示浮点数时,由于二进制无法精确表示某些十进制小数,导致计算结果可能存在舍入误差或不精确的情况。这个问题主要源于浮点数的存储方式。...前端数学库Math.js、Decimal.js和Big.js都是用于处理精确计算的JavaScript库。它们提供了更高精度的数学运算功能,解决了JavaScript中浮点数精度问题。...Math.js还具有表达式解析和求值功能,可以处理复杂的数学表达式。Decimal.jsDecimal.js是一个专门用于高精度浮点数计算的JavaScript库。...Big.jsBig.js是另一个用于高精度计算的JavaScript库。它也使用字符串来表示数字,并提供了大整数和大浮点数的支持。...Big.js支持基本运算符、比较操作、取模运算等,并具有可配置的舍入模式和格式化选项。这些库都可以帮助开发人员在需要进行精确计算或处理大数字时避免浮点数精度问题。
前言 JS的计算是会损失精度的,比如 0.1+0.2 //0.30000000000000004 1.2-1 //0.19999999999999996 1.15*100 //114.99999999999999...1.2/0.2 //5.999999999999999 方式1 // 两个浮点数求和 function num_add(num1,num2){ var r1,r2,m; try{ r1...catch(e){ r2=0; } m=Math.pow(10,Math.max(r1,r2)); return Math.round(num1*m+num2*m)/m; } // 两个浮点数相减...r1:r2; return Number((Math.round(num1*m-num2*m)/m).toFixed(n)); } // 两个浮点数相乘 function num_multiply...JS地址 https://cdnjs.cloudflare.com/ajax/libs/mathjs/5.0.0/math.min.js 页面引用 <script src="https://cdnjs.cloudflare.com
解惑 其实这设计到了计算机的浮点数存储是以二进制进行存储的。...分析 为了方便分析,我们讲计算机存储的字节数量进行缩减,我们假设小数点后只能保存8为小数。...8位多,python浮点数占用8个字节,64位。...那么如何做这种精度的计算呢?其实很简单,精度丢失是小数才会有,只要转成整数,就不会有这个问题了。比如Python中: (1.0+2.0)/10 结果:0.3, 没毛病。...当然,这个0.3也不是精确的0.3,但会在显示过程进行精度转换,通过整数运算,避免了小数运算过程中的丢失精度问题。
moneyInteger); return result; } 上面这个方法里面,float-->int转化时直接丢弃小数部分,从而取得小数中的整数,而后作差得到小数部分,但是看下面输出: 2.浮点型表示一个小数的时候存在精度不准确的问题...注意:上面的计算过程循环了,也就是说*2永远不可能消灭小数部分,这样算法将无限下去。很显然,小数的二进制表示有时是不可能精确的 。其实道理很简单,十进制系统中能不能准确表示出1/3呢?...这也就解释了为什么浮点型减法出现了精度丢失的问题。 3.验证 众所周知、 Java 的float型在内存中占4个字节。...将一个float型转化为内存存储格式的步骤为: (1)先将这个实数的绝对值化为二进制格式,注意实数的整数部分和小数部分的二进制方法在上面已经探讨过了。
浮点数计算在软考中的考查形式一般为选择题,要求选择正确的或者错误的是什么,所以需要学习浮点数的基本运算流程。...另外在本科《计算机组成原理》中还学过 IEEE754单精度 浮点数运算,所以一块复习。...---- 二、尾数计算 在进行 A + B 的计算中,因为 B 的阶乘(8)要小于 A 的阶乘(9),所以临时将 B 的数值改为 0.1056 x 10^9。...最后再套上阶乘,结果就是 1.179 x 10 ^9,计算完毕。 ---- 三、IEEE754 单精度浮点数运算 IEEE754 单精度浮点数运算可以解决浮点数进制转换的问题,具体流程如下图所示。...---- 四、总结 本文对浮点数计算流程和 IEEE754 进行了复习,主要是要了解浮点数对接和尾数相加的流程。
原文地址:http://eux.baidu.com/blog/fe/关于js中的浮点运算 ?...浮点数在计算机中的存储 IEEE标准 首先科普一下 js 中使用的二进制浮点数算术标准 IEEE_754 他采用的存储格式为: E = (-1)^ × M × ^E (-1)^s表示符号位,当s=0,...由于 javascript 是双精度的,所以 0.1 在计算机中存储格式为: 0 01111111011 1001100110011001100110011001100110011001100110011010...另外,由于js并没有特别区分整型和浮点型,实际上整型在 js 里面也是用浮点数的结构存储的,不过放在了尾数部分,以便于在计算过程总能随意自由切换。...那要怎么在 js 中尽可能准确的计算出结果,以及怎么判断两个小数是否相等呢,敬请期待下回分解~ 参考资料 IEEE_754-1985 how to round binary fractions 浮点数的二进制表示
再看 回顾了小数的保存之后, 再来回看之前的, 为什么浮点数最大值, 减去1之后, 本身没有任何变化呢? 要回答这个问题, 还需要知道两个浮点数在计算机中是如何进行计算的....如此说来, 浮点数的指数在进行转换的时候, 岂不是很容易丢失精度?...但是之后只是对同一个数字做了一次加减, 就导致发生其精度丢失了. 其原因同样是因为在计算中对指数部分统一导致的....为了验证我的猜想, 只要将计算顺序修改, 当 s 变量还没有小数部分, 不至于丢失精度的时候进行大数的运算: a = 1.0 b = 0.12345678 c = 0.11111111 s = 0.0...这时, 计算结果印证了之前的讨论. 如此说来, 小数在两个相差很多的数字之间进行运算的时候, 也容易导致丢失精度.
关于C语言的浮点数精度问题,很多人存在误解,他们往往认为精度指的是float、double和long double三种数据类型,这是片面的。 拓展: 浮点数的二进制存储细节: ?...对于每个不同的浮点数,都有相应的最小可辨识精度(即δ),此最小可辨识精度随着该浮点数的数值变化而变化,具体究竟是多少要具体分析该浮点数的二进制存储内部细节,找到其指数域之后才能确定,我们根据这个最小可辨识精度才能明确判定代码中所有对此浮点数的运算是否有效
计算机在处理浮点数时会用二进制表示,遇到无法用二进制精确表示的十进制浮点数时便会根据精确度位数进行截断,Python 也不例外。...Python 精度 python 默认使用的是 double 精度, 浮点数在计算机中都是以二进制保存,当有无法精确表示的二进制数字时便会产生截断, 这就导致了在有限精度下,电脑为自己把精度范围外的小数...可以随时在 Python 环境下测试: 0.1+0.2 --> 0.30000000000000004 也就是说,如果你使用很精确的浮点数字计算的结果作为一个逻辑表达式时,可能会发生问题: 0.1...+ 0.2 == 0.3 --> False 问题原理 double 用64 个bit 位表示数据 有效精度位数是 52 位,那么当表示的小数用52bit 无法精确表示时便会截断 示例代码: import...解决方案 如果有需要更高精度计算的需求,可以继续提升有效 bit 位数。
领取专属 10元无门槛券
手把手带您无忧上云