首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    华中科技大学伍冬睿教授团队:生理计算中的对抗攻击与防御综述

    生理计算使用人类的生理数据作为系统的实时输入。其包括或者与脑机接口、情感计算、自适应自动化、健康信息学以及基于生理信号的生物识别等领域高度重合。生理计算增加了从用户到计算机的通信带宽,但也易受各种类型的对抗攻击,其中攻击者故意操纵训练和/或测试样例来劫持机器学习算法的输出,可能导致用户困惑、受挫、受伤甚至死亡。然而,生理计算系统的脆弱性没有得到足够的重视,并且学界目前不存在针对生理计算领域的对抗攻击的综述。本文系统性综述了生理计算主要研究领域、不同类型的对抗攻击、其在生理计算上的应用以及相应的防御措施,从而填补了这一空白。希望本综述能吸引更多关于生理计算系统脆弱性的研究兴趣,更重要的是,能让更多人关注并投入使生理计算系统更加安全的防御策略的研究。

    02

    芯跳医疗李拿云:当「芯跳」遇上「心跳」,看技术如何改变传统医疗检测手段 | 镁客·请讲

    点击图片立刻参与! 在快节奏的社会下,人们需要一种简便且准确的心脏检测方式。 作者 | 来自镁客星球的家衡 近些年,似乎每隔一段时间,我们就能从社会新闻中看到有人骤然猝死的消息。 根据世卫组织(WHO)的定义,身体健康或看上去健康的人,在短时间内因自然疾病突然死亡,就叫猝死。但事实上,猝死的人群大多患有某种心血管疾病。平时,心血管疾病以慢性病的姿态潜伏,但随时都能扣动扳机,带走一条鲜活的生命。 “因为检查不便利,所以心脏疾病其实是一种隐形的疾病,但很多人忽视了筛查,最终会造成悲剧。”芯跳医疗CEO李拿云告

    03

    Nat. Biomed. Eng.| 综述:医学和医疗保健中的自监督学习

    本文介绍由哈佛大学计算机科学系Rayan Krishnan 等人发表在 Nature biomedical engineering 上的一篇综述《Self-supervised learning in medicine and healthcare》。常规的深度学习模型需要大量标注的数据作为训练集,例如计算机视觉常用的数据集 ImageNet 包含了 21,000 类 1600 万张图片。然而对于医疗数据来说,想要获取这样规模的标注数据是非常困难的。一方面,标注医疗图像需要拥有专业的医疗知识;另一方面,不同于普通物体,我们一眼就可以分辨,医疗图像往往需要医学专家花费数分钟进行确认。因此,如何利用大量的无标签数据对于 AI 医疗的发展至关重要。自监督学习通过构建一系列的自监督任务来进行预训练,使得模型可以提取到更有用的特征,然后在有标签的数据集中进行进一步训练,使得模型在标注数据较少的条件下也能获得较好的泛化能力。文章展望了自监督学习应用于AI医疗的发展趋势,并介绍了两类近年来被广泛研究的用于 AI 医疗的自监督的预训练方法:对比学习和生成学习。

    03

    深度信号处理:利用卷积神经网络测量距离

    解决这个问题很简单,可以通过找到峰值,然后减去它们的X坐标来测量它们之间的水平距离来解决。这可以通过使用可用的工具和库有效地完成。然而,我们的目标是训练一个神经网络来预测两个峰之间的距离。一旦我们证明了神经网络可以处理这一任务,我们就可以在更复杂的端到端学习任务中重用相同的架构,而测量距离只是学习更复杂关系的一种手段。这源于深度学习的理念,即我们应该尝试让神经网络学习特征,而不是让工程师手工编码特征并希望这些特征是最相关的。如果我们能证明神经网络可以学习距离特征,我们就可以在更复杂的网络中使用它,在这些网络中,最终结果将取决于距离以外的许多其他因素。这些任务的典型例子是解释心电图或天文数据。

    01
    领券