首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python数据分析(中英对照)·Using the NumPy Random Module 使用 NumPy 随机模块

    NumPy makes it possible to generate all kinds of random variables. NumPy使生成各种随机变量成为可能。 We’ll explore just a couple of them to get you familiar with the NumPy random module. 为了让您熟悉NumPy随机模块,我们将探索其中的几个模块。 The reason for using NumPy to deal with random variables is that first, it has a broad range of different kinds of random variables. 使用NumPy来处理随机变量的原因是,首先,它有广泛的不同种类的随机变量。 And second, it’s also very fast. 第二,速度也很快。 Let’s start with generating numbers from the standard uniform distribution,which is a the completely flat distribution between 0 and 1 such that any floating point number between these two endpoints is equally likely. 让我们从标准均匀分布开始生成数字,这是一个0和1之间完全平坦的分布,因此这两个端点之间的任何浮点数的可能性相等。 We will first important NumPy as np as usual. 我们会像往常一样,先做一个重要的事情。 To generate just one realization from this distribution,we’ll type np dot random dot random. 为了从这个分布生成一个实现,我们将键入np-dot-random-dot-random。 And this enables us to generate one realization from the 0 1 uniform distribution. 这使我们能够从01均匀分布生成一个实现。 We can use the same function to generate multiple realizations or an array of random numbers from the same distribution. 我们可以使用同一个函数从同一个分布生成多个实现或一个随机数数组。 If I wanted to generate a 1d array of numbers,I will simply insert the size of that array, say 5 in this case. 如果我想生成一个一维数字数组,我只需插入该数组的大小,在本例中为5。 And that would generate five random numbers drawn from the 0 1 uniform distribution. 这将从0-1均匀分布中产生五个随机数。 It’s also possible to use the same function to generate a 2d array of random numbers. 也可以使用相同的函数生成随机数的2d数组。 In this case, inside the parentheses we need to insert as a tuple the dimensions of that array. 在本例中,我们需要在括号内插入该数组的维度作为元组。 The first argument is the number of rows,and the second argument is the number of columns. 第一个参数是行数,第二个参数是列数。 In this case, we have generated a table — a 2d table of random numbers with five rows and three columns. 在本例中,我们生成了一个表——一个由五行三列随机数组成的二维表。 Let’s then look at the normal distribution. 让我们看看正态分布。 It requires the mean and the standard deviation as its input parameters. 它需

    01

    别用 KMP 了, Rabin-Karp 算法了解下?

    经常有读者留言,请我讲讲那些比较经典的算法,我觉得有这个必要,主要有以下原因: 1、经典算法之所以经典,一定是因为有独特新颖的设计思想,那当然要带大家学习一波。 2、我会尽量从最简单、最基本的算法切入,带你亲手推导出来这些经典算法的设计思想,自然流畅地写出最终解法。一方面消除大多数人对算法的恐惧,另一方面可以避免很多人对算法死记硬背的错误习惯。 我之前用状态机的思路讲解了 KMP 算法,说实话 KMP 算法确实不太好理解。不过今天我来讲一讲字符串匹配的另一种经典算法:Rabin-Karp 算法,这是一个很简单优雅的算法。 本文会由浅入深地讲明白这个算法的核心思路,先从最简单的字符串转数字讲起,然后研究一道力扣题目,到最后你就会发现 Rabin-Karp 算法使用的就是滑动窗口技巧,直接套前文讲的 滑动窗口算法框架 就出来了,根本不用死记硬背。 废话不多说了,直接上干货。 首先,我问你一个很基础的问题,给你输入一个字符串形式的正整数,如何把它转化成数字的形式?很简单,下面这段代码就可以做到: string s = "8264"; int number = ; for (int i = ; i < s.size(); i++) { // 将字符转化成数字 number = * number + (s[i] - '0'); print(number); } // 打印输出: // 8 // 82 // 826 // 8264 可以看到这个算法的核心思路就是不断向最低位(个位)添加数字,同时把前面的数字整体左移一位(乘以 10)。 为什么是乘以 10?因为我们默认探讨的是十进制数。这和我们操作二进制数的时候是一个道理,左移一位就是把二进制数乘以 2,右移一位就是除以 2。 上面这个场景是不断给数字添加最低位,那如果我想删除数字的最高位,怎么做呢?比如说我想把 8264 变成 264,应该如何运算?其实也很简单,让 8264 减去 8000 就得到 264 了。 这个 8000 是怎么来的?是 8 x 10^3 算出来的。8 是最高位的数字,10 是因为我们这里是十进制数,3 是因为 8264 去掉最高位后还剩三位数。 上述内容主要探讨了如何在数字的最低位添加数字以及如何删除数字的最高位,用R表示数字的进制数,用L表示数字的位数,就可以总结出如下公式: /* 在最低位添加一个数字 */ int number = ; // number 的进制 int R = ; // 想在 number 的最低位添加的数字 int appendVal = ; // 运算,在最低位添加一位 number = R * number + appendVal; // 此时 number = 82643 /* 在最高位删除一个数字 */ int number = ; // number 的进制 int R = ; // number 最高位的数字 int removeVal = ; // 此时 number 的位数 int L = ; // 运算,删除最高位数字 number = number - removeVal * R^(L-); // 此时 number = 264 如果你能理解这两个公式,那么 Rabin-Karp 算法就没有任何难度,算法就是这样,再高大上的技巧,都是在最简单最基本的原理之上构建的。不过在讲 Rabin-Karp 算法之前,我们先来看一道简单的力扣题目。 高效寻找重复子序列 看下力扣第 187 题「重复的 DNA 序列」,我简单描述下题目: DNA 序列由四种碱基A, G, C, T组成,现在给你输入一个只包含A, G, C, T四种字符的字符串s代表一个 DNA 序列,请你在s中找出所有重复出现的长度为 10 的子字符串。 比如下面的测试用例: 输入:s = "AAAAACCCCCAAAAACCCCCCAAAAAGGGTTT" 输出:["AAAAACCCCC","CCCCCAAAAA"] 解释:子串 "AAAAACCCCC" 和 "CCCCCAAAAA" 都重复出现了两次。 输入:s = "AAAAAAAAAAAAA" 输出:["AAAAAAAAAA"] 函数签名如下: List<String> findRepeatedDnaSequences(String s); 这道题的拍脑袋解法比较简单粗暴,我直接穷举所有长度为 10 的子串,然后借助哈希集合寻找那些重复的子串就行了,代码如下: // 暴力解法 List<String> findRepeatedDnaSequences(String s) { int n = s.length(); // 记录出现过的子串 HashSet<String> seen = new HashSet(); // 记录那些重复出现多次的子串 // 注

    02

    扫码

    添加站长 进交流群

    领取专属 10元无门槛券

    手把手带您无忧上云

    扫码加入开发者社群

    相关资讯

    热门标签

    活动推荐

      运营活动

      活动名称
      广告关闭
      领券