本文简介 点赞 + 关注 + 收藏 = 学会了 fabric.js 可以通过 viewportTransform 属性配置画布的视窗属性。...听上去很高级的样子,但其实这是原生 canvas 就已经存在的东西,fabric.js 的 viewportTransform 也就直接复用了原生 canvas 的 transform() 。...fabric.js 官方文档上也是这么说的 viewportTransform :Array The transformation (a Canvas 2D API transform matrix...上面列出来的元素就是代表这个意思,这和原生 canvas 的 transform() 方法接收参数的顺序是一样的,看上去就是这么“凌乱”~ 其实这涉及到线性代数的知识,在 canvas 中,transform() 方法也可以称为“变换矩阵...学 fabric.js 最主要是动手实践,写多几次慢慢就能领悟其中原理。 viewportTransform 的6个参数主要实现3个功能:缩放、倾斜、平移。
box-shadow: 0 12px 15px 0 rgba(0, 0, 0, 0.24); } 产生随机数...randMax" id="randMax" style="width: 25px;"> 生成随机数
---- theme: smartblue 本文正在参加「金石计划」 本文简介 在 canvas 里,变换是基础功能。...很多基于 canvas 封装的库都有这功能,比如 《Fabric.js 变换视窗》。 变换是针对画布进行全局调整的一种能力,它可以对画布进行全局移动、缩放、旋转等操作。...p5.js 同样具备变换功能,而且还封装了很多方便的函数去实现变换功能。本文就简单介绍一下 p5.js 的变换操作方法。 为了方便讲解(我懒),本文使用 CDN 的方式引入 p5.js。...如果你在项目中使用 npm 的方式安装 p5.js ,可以参考 《p5.js 使用npm安装p5.js后如何使用?》 的用法。...使用npm安装p5.js后如何使用?》
使用场景: 随机 短信验证码 import random import string # 指定随机数长度 r_num = 4 # 生成数字 + 字母(字符串序列) token = string.ascii_letters...+ string.digits ''' string.ascii_letters:生成大小写字母(type:字符串) string.digits:生成数字(type:字符串) ''' # 随机选择...指定长度 随机码(字符串列表) token = random.sample(token,r_num) # 生成 数字 + 字母 随机数 token = ''.join(token) # 加强版(一行代码
文章目录 一、傅里叶变换线性性质 二、傅里叶变换时移性质 证明过程 一、傅里叶变换线性性质 ---- 傅里叶变换 线性性质 : 两个序列之和 的 傅里叶变换 , 等于 两个序列 的 傅里叶变换 之和...; SFT[ax_1(n) + bx_2(n)] = aSFT[x_1(n)] + bSFT[x_2(n)] 代入 傅里叶变换 公式 SFT[x(n)] = X(e^{j\omega}) = \sum_...---- 傅里叶变换时移性质 : 序列信号 在 " 时间 " 上 , 进行一系列 " 平移 " 之后 , 平移 只是影响 序列信号傅里叶变换 的 " 相频特性 " , 平移 没有影响 序列信号傅里叶变换...的 " 幅频特性 " ; x(n) 序列 线性移位 -n_0 后 为 x(n - n_0) , x(n - n_0) 序列的 傅里叶变换 SFT[x(n - n_0)] 是 原来的...x(n) 序列 的 傅里叶变换 SFT[x(n)] 乘以 e^{-j \omega n_0} ; 使用公式表示为 : SFT[x(n - n_0)] = e^{-j \omega n_0} X
数字图像处理之傅里叶变换 by方阳 版权声明:本文为博主原创文章,转载请指明转载地址 http...前言 今天将之前学的数字图像处理的东西放到博客园里,所以下面会有连续几篇的博客都是关于数字图像处理的!...这篇博客将介绍图像的快速傅里叶变换,逆变换以及图像的平移变换的实现,理论的知识还请看书和百度,这里不再复述。 2....实现内容 (1) 选择一幅图像,显示傅里叶变换频谱。再对得到傅里叶图像做傅里叶逆变换,显示图像,观察是否与原图像相同。 (2) 图像做傅里叶变换的平移性证明,将频谱中心移至中央。 4....结果分析 1.由第一个图可以看出,图像经过傅里叶变换再经过傅里叶反变换是可以还原出原图像的。
数字图像处理之亮度变换 by方阳 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com...今天写一点亮度变换的东西;亮度变换主要有线性与非线性变化和直方图处理,线性变化有分段线性和直接线性之分,非线性有对数变换,幂律变换等等,直方图处理有直方图均衡和直方图归一化,今天只讲直方图均衡。...参考书籍:数字图像处理(matlab版)——冈萨雷斯 直接线性变换:直接乘以倍数 参考代码: I=imread('lena.bmp'); I1=I*2; I2=I/2; figure; subplot(...非线性变换:对数和幂律变换 参考代码: figure; A=double(I); B=40*(log(A+1)); I3=uint8(B); subplot(1,3,1); imshow(I3); title...'); subplot(2,2,4); imhist(I9); title('变换后的直方图'); ylim('auto'); 运行结果: ?
文章目录 一、序列傅里叶变换实例 1、傅里叶变换 2、傅里叶变换幅频特性 3、傅里叶变换相频特性 一、序列傅里叶变换实例 ---- 求序列 x(n) = R_N(n) \ \ \ \ ① 的 序列傅里叶变换...SFT ; 1、傅里叶变换 傅里叶变换公式 : 根据 x(n) 序列 求 X(e^{j\omega}) 傅里叶变换 , X(e^{j\omega}) = \sum_{n=-\infty}^{+...\infty} x(n) e^{-j \omega n} \ \ \ \ ② 将 ① 带入到 ② 傅里叶变换 公式中 , n 的取值范围是 [0, N-1] , X(e^{j\omega}) =...4} = \cfrac{\pi k}{2} 时 , SFT[R_4(n)] = 0 , 第一个点是 \cfrac{\pi}{2} , 第二个点是 \pi , 如下图所示 ; 2、傅里叶变换幅频特性...幅频特性 : 在 matlab 中绘制效果如下 , matlab 中取模后再绘制 ; 3、傅里叶变换相频特性 相频特性 : matlab 中绘制其 相频特性 , 相频特性 , 主要看 X(e^
生成随机数字 func RandomInt(start int,end int) int{ rand.Seed(time.Now().UnixNano()) random:=rand.Intn...(end-start) random = start + random return random } 生成随机字符串 func RandString(len int) string
这两天在制作Weblog网站的时候,想添加一个点击链接随机跳转到一个认证页面,因为认证页面的后缀都是数字.html,所以其实很简单,这个功能也类似十年之约的虫洞,但是我觉得其用的不是这种方式。...JS部分 首先需要创建JS来随机获取一个数字,并合成链接地址: //合成链接地址 function myFunction(e) { var number = randomNum...(1, 100); e.href = "https://weblog.net.cn/auth/" + number + ".html"; }; //生成随机数字 function randomNum...} } HTML部分 然后需要在a标签中添加onclick事件调用合成的链接地址: 点击进入随机地址
文章目录 一、求 1 的傅里叶反变换 0、周期 2π 的单位脉冲函数 1、问题分析 2、涉及公式介绍 3、1 的傅里叶反变换 4、1 的傅里叶反变换 一、求 1 的傅里叶反变换 ---- 已知 傅里叶变换...X(e^{j\omega}) = 2 \pi \widetilde{\delta} ( \omega ) 求该 傅里叶变换的 反变换 ISFT[X(e^{j\omega})] 0、周期 2π 的单位脉冲函数...infty}^{\infty} \delta( \omega - 2\pi m ) m 取值 (-\infty , +\infty) ; 其函数图像如下样式 : 1、问题分析 求 1 的 傅里叶变换...SFT , 无法直接求出 , 这里求其 傅里叶反变换 ; \widetilde{\delta} ( \omega ) 序列如下图所示 : 除了在 0 位置外 , 在 2\pi , 4...: 利用 " 正交函数 " 可以推导出 " 傅里叶反变换 " , 即 根据 傅里叶变换 推导 序列 ; x(n) = \cfrac{1}{2\pi} \int_{-\pi} ^\pi X( e^{j
对数变换 对数变换的通用公式是: s=c log(1+r); 其中,c是一个常数,对数变换,将源图像中范围较窄的低灰度值映射到范围较宽的灰度区间,同时将范围较宽的高灰度值区间映射为较窄的灰度区间,从而扩展了暗像素的值...对数变换曲线如下图。 ? 下面的代码实现了图像灰度的对数变换。...幂律变换(伽马变换) 伽马变换主要用于图像的校正,对灰度值过高(图像过亮)或者过低(图像过暗)的图像进行修正,增加图像的对比度,从而改善图像的显示效果。...伽马变换的公式为: s= caⁿ 其中c和n为正常数。 伽马变换的效果与对数变换有点类似,但是,情况相反,与反对数变换类似。其函数曲线如下 ?...当n=1时,该灰度变换是线性的,此时通过线性方式改变原图像。 Python实现图像灰度的伽玛变换代码如下,主要调用幂函数实现。
//Math.random()获取随机数0-1的随机数 re=Math.random()+' ';//0-1随机数 document.write('0-1随机数'+re);...//取随机数 0-5之间 re1=Math.random()*5;//0-1随机数 document.write('0-5之间随机小数'+re1+' '); //取随机数 15...-30(x-y)之间 Math.random()*(y-x)+x re2=Math.random()*(30-15)+15; document.write('15-30之间随机小数'+re2+...' '); //取随机整数 x-y之间随机整数 Math.floor(Math.random()*(y-x+1)+x) re3=Math.floor(Math.random()...*(50-20+1)+20) document.write('20-50之间随机整数'+re3+' ');
投影变换矩阵 2.4. 视图变换矩阵 3. 着色器变换 3.1. 代码 3.2. 解析 4. 其他 1....概述 我在《WebGL简易教程(五):图形变换(模型、视图、投影变换)》这篇博文里详细讲解了OpenGL\WebGL关于绘制场景的图形变换过程,并推导了相应的模型变换矩阵、视图变换矩阵以及投影变换矩阵。...这里我就通过three.js这个图形引擎,验证一下其推导是否正确,顺便学习下three.js是如何进行图形变换的。 2. 基本变换 2.1....投影变换)》中的描述,可以通过three.js的矩阵运算来推导其视图矩阵: var eye = new THREE.Vector3(0, 0, 100); var up = new THREE.Vector3.../three/libs/util.js"> <
文章目录 一、傅里叶变换线时移性质 二、傅里叶变换线时移性质示例 一、傅里叶变换线时移性质 ---- 傅里叶变换时移性质 : 序列信号 在 " 时间 " 上 , 进行一系列 " 平移 " 之后 , 平移...只是影响 序列信号傅里叶变换 的 " 相频特性 " , 平移 没有影响 序列信号傅里叶变换 的 " 幅频特性 " ; x(n) 序列 线性移位 -n_0 后 为 x(n - n_0) , x...(n - n_0) 序列的 傅里叶变换 SFT[x(n - n_0)] 是 原来的 x(n) 序列 的 傅里叶变换 SFT[x(n)] 乘以 e^{-j \omega n_0} ; 使用公式表示为...) 序列向左移 加 , 序列向右移 减 ; x_1(n)=\{1,2,3,4,5,6,7,8,9,9,8,7,6,5,4,3,2,1\} 序列的 " 幅频特性 " , 即 x_1(n) 的傅里叶变换取模...: |X_1(e^{j\omega})| 如下图所示 : x_2(n) 序列的 " 幅频特性 " , 即 x_2(n) 的傅里叶变换取模 : |X_2(e^{j\omega})| 如下图所示
文章目录 一、傅里叶变换时移性质 二、傅里叶变换时移性质示例 一、傅里叶变换时移性质 ---- 傅里叶变换频移性质 : " 序列信号 x(n) " 的 " 傅里叶变换 A " , " 序列信号 x...(n) " 与 " 单位复指数 e^{j \omega_0 n} " 相乘 , 得到的 " 序列 B " , 注意这里的 单位复指数 中的 \omega_0 就是 傅里叶变换 中的移位 , 求该..." 序列 B " 的 " 傅里叶变换 C " , " 傅里叶变换 A " 与 " 傅里叶变换 C " 这两个频域信息形状相同 , 位移相差 \omega_0 ; 也就是说 " 傅里叶变换 A "...移位 \omega_0 后, 得到 " 傅里叶变换 C " ; 使用公式表示为 : SFT[e^{j \omega_0 n}x(n)] = X(e^{j ( \omega - \omega_0 )}...) 二、傅里叶变换时移性质示例 ---- 已知序列 x_1(n)=\{1,2,3,4,5,6,7,8,9,9,8,7,6,5,4,3,2,1\} x_2(n) 序列 是 x_1(n) 序列 乘以
数字图像傅立叶变换 一、研究目的 深化对DFT算法原理和基本性质的理解: 通过使用快速傅立叶变换(FFT)实现数字图像的傅立叶变换,旨在加深对DFT算法原理的理解。...实现数字图像傅立叶变换算法并分析实验结果: 设计并实现数字图像傅立叶变换算法,详细描述其原理。进行数字图像傅立叶变换实验,并对实验结果进行深入分析,从中获取有关图像频谱的信息。...3.3 矩阵形式的傅立叶变换的算法如下: 数字图像F的傅立叶正变换: 数字图像F的傅立叶反变换: 变换矩阵: 四、实验内容与思考 4.1 傅立叶变换 对原图像进行傅立叶变换,实验结果如图1: 图1 分析...5.2 实验思考 (一)在遥感数字图像傅立叶变换的频谱图上原点附近出现的亮点的来源是什么? 在遥感数字图像的傅立叶变换频谱图上,原点附近出现的亮点通常是由直流分量或低频分量引起的。...在遥感数字地图或普通景物的数字图像的频谱图上识别地物或类别的延伸方向,可以通过以下步骤进行: 获取频谱图:首先,对原始图像进行傅立叶变换,得到频谱图。
1 <!DOCTYPE html> 2 <html> 3 <head> 4 <meta charset="UTF-8"> 5 ...
文章目录 一、求 e^{j \omega_0 n} 傅里叶变换 1、傅里叶变换与反变换公式介绍 2、带入 傅里叶变换 公式 一、求 e^{j \omega_0 n} 傅里叶变换 ---- 求...1、傅里叶变换与反变换公式介绍 傅里叶变换 : 时域 " 离散非周期 " 信号 , 其频域就是 " 连续周期 " 的 , 其频域 可以 展开成一个 " 正交函数的无穷级数加权和 " , 如下公式 X(e...^{j\omega}) = \sum_{n=-\infty}^{+\infty} x(n) e^{-j \omega n} 傅里叶反变换 : 利用 " 正交函数 " 可以推导出 " 傅里叶反变换 " ,...SFT[e^{j \omega_0 n}] = \sum_{n=-\infty}^{+\infty} e^{ -j ( \omega - \omega_0 ) } \ \ \ \ ① 在上一篇博客 【数字信号处理...】序列傅里叶变换 ( 基本序列的傅里叶变换 | 求 1 的傅里叶变换 ) 中 , 求 1 的傅里叶变换得到如下公式 : X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty
文章目录 一、求 a^nu(n) 傅里叶变换 1、傅里叶变换与反变换公式介绍 2、求 a^nu(n) 的傅里叶变换推导过程 一、求 a^nu(n) 傅里叶变换 ---- 求 a^nu(n) 的傅里叶变换...其中 |a| \leq 1 ; 1、傅里叶变换与反变换公式介绍 傅里叶变换 : 时域 " 离散非周期 " 信号 , 其频域就是 " 连续周期 " 的 , 其频域 可以 展开成一个 " 正交函数的无穷级数加权和..." , 如下公式 X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x(n) e^{-j \omega n} 傅里叶反变换 : 利用 " 正交函数 " 可以推导出..." 傅里叶反变换 " , 即 根据 傅里叶变换 推导 序列 ; x(n) = \cfrac{1}{2\pi} \int_{-\pi} ^\pi X( e^{j \omega } )e^{j \omega...k} d \omega 2、求 a^nu(n) 的傅里叶变换推导过程 将 a^nu(n) 序列 , 直接带入到 X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty}
领取专属 10元无门槛券
手把手带您无忧上云