在类 别增量学习过程中, 学习新类意味着模型要尽可能 适配新类别的特征, 抵抗灾难性遗忘则要求模型仍 然反映旧类别的特征, 因此二者存在学习过程中的 权衡 (trade-off)....而类别增量学习因其应用面最广, 难 度最大, 在所有增量学习问题的设定中受到最多关 注....参数层面
参数精简的网络结构:当前的类别增量学习 算法往往部署在较短的数据流中, 然而真实应用中 的增量学习模型可能需要部署在移动终端上, 并进 行长期的增量学习和模型更新过程....因此, 开放动态环境下的 应用需要设计适应长数据流的类别增量学习模型 结构, 并保证整个增量学习过程中模型参数具有平 缓的增长速度....可通过在增量学习过程中构造 元学习任务[205,209,210] , 将模型在元学习任务中学得 的可泛化的学习能力应用到真实的类别增量学习 任务中.