首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Poly-YOLO:更快,更精确的检测(主要解决Yolov3两大问题,附源代码)

    但是这种kmean算法得出的结果是有问题的,在实际项目中也发现了。...作者指出,kmean这种设置,仅仅在:M ∼ U(0, r)情况下采用合理的。其中r是输入图片分辨率,例如416。...该式子的意思是物体的大小分布是满足边界为0到r的均匀分布,也就是说在416x416图片上,各种大小尺度的bbox都会存在的情况下,kmean做法是合理的。...对于kmean聚类带来的问题,有两种解决办法: kmean聚类流程不变,但是要避免出现小物体被分配到小输出特征图上面训练和大物体被分配到大输出特征图上面训练问题,具体就是首先基于网络输出层感受野,定义三个大概范围尺度...可以避免kmean聚类问题,但是为了防止标签重写,故把输出分辨率调高,此时就完美了。作者实际上采用的是1/4尺度输出,属于高分辨率输出,重写概率很低。

    65410
    领券