进入大数据时代,大数据存储的解决方案,往往涉及到数据仓库的选型策略。从传统时期的数据仓库,到大数据环境下的数据仓库,其核心的技术架构是在随着最新技术趋势而变化的。今天的大数据开发学习分享,我们就来讲讲,大数据环境下的数据仓库。
作者 | 王一鹏 佀鑫倩 十年 Hadoop 退居幕后,云时代下的数据平台有了新的探索方向。 大数据领域从来都不缺乏重磅消息。尤记得 Cloudera 与 Hortonworks 宣布合并,后又被 KKR 和 CD&R 收购并被私有化,再加上 HPE 收购 MapR,曾经凭借 Hadoop 冲上云霄的三驾马车,如今风光不再。此外,今年 Apache 软件基金会(ASF)宣布将其至少 19 个开源项目撤回到 Apache Attic(用于归档的开源项目),其中有 10 个项目属于 Hadoop 生态系统。
SQL 是一门 ANSI 的标准计算机语言,用来访问和操作数据库系统。SQL 语句用于取回和更新数据库中的数据。
随着互联网和物联网的逐渐普及,各行业都开始源源不断产生单源或多源数据,这些高并发的数据具有高度的实时性和明显的时间序列,数据越热的时候处理,获得的业务价值越高。随着数字化转型的深入,企业都在积极建设数据能力,开发数据应用,以实现数据驱动业务。
作者 | 赵伟 策划 | 凌敏 业务背景 思必驰是一家对话式人工智能平台公司,拥有全链路的智能语音语言技术,致力于成为全链路智能语音及语言交互的平台型企业,自主研发了新一代人机交互平台 DUI 和人工智能芯片 TH1520,为车联网、IoT 及政务、金融等众多行业场景合作伙伴提供自然语言交互解决方案。 思必驰于 2019 年首次引入 Apache Doris ,基于 Apache Doris 构建了实时与离线一体的数仓架构。相对于过去架构,Apache Doris 凭借其灵活的查询模型、极低的运维
内容来源:2017 年 11 月 18 日,Kyligence高级架构师史少锋在“2017中国开源年会 China Open Source Conference 2017”进行《Apache Kylin成长之路》演讲分享。IT 大咖说(微信id:itdakashuo)作为独家视频合作方,经主办方和讲者审阅授权发布。 阅读字数:2003 | 6分钟阅读 摘要 从第一个由国人主导并贡献到Apache基金会的开源项目,到今天得到国内外众多公司使用,Apache Kylin一路走来遇到过不少困难,也得到许多人的支持
阿里妹导读:今年的双11,实时计算处理的流量洪峰创纪录地达到了每秒40亿条的记录,数据体量也达到了惊人的每秒7TB,基于Flink的流批一体数据应用开始在阿里巴巴最核心的数据业务场景崭露头角,并在稳定性、性能和效率方面都经受住了严苛的生产考验。本文深度解析“流批一体”在阿里核心数据场景首次落地的实践经验,回顾“流批一体”大数据处理技术的发展历程。
❝每家数字化企业在目前遇到流批一体概念的时候,都会对这个概念抱有一些疑问,到底什么是流批一体?这个概念的来源?这个概念能为用户、开发人员以及企业带来什么样的好处?跟随着博主的理解和脑洞出发吧。 ❞
数据从离线到实时是当前一个很大的趋势,但要建设实时数据、应用实时数据还面临两个难题。首先是实时和离线的技术栈不统一,导致系统和研发重复投入,在这之上的数据模型、代码也不能统一;其次是缺少数据治理,实时数据通常没有纳入数据中台管理,没有建模规范、数据质量差。针对这两个问题,网易数帆近日推出了实时数据湖引擎 Arctic。据介绍,Arctic 具备实时数据更新和导入的能力,能够无缝对接数据中台,将数据治理带入实时领域,同时支持批量查询和增量消费,可以做到流表和批表的一体。
采访嘉宾|王峰(莫问) 作者 | Tina 作为最活跃的大数据项目之一,Flink 进入 Apache 软件基金会顶级项目已经有八年了。 Apache Flink 是一款实时大数据分析引擎,同时支持流批执行模式,并与 Hadoop 生态可以无缝对接。2014 年,它被接纳为 Apache 孵化器项目,仅仅几个月后,它就成为了 Apache 的顶级项目。 对于 Flink 来说,阿里有非常适合的流式场景。作为 Flink 的主导力量,阿里从 2015 年开始调研 Flink,并于 2016 年第一次在搜
剩喜漫天飞玉蝶,不嫌幽谷阻黄莺。2020 年是不寻常的一年,Flink 也在这一年迎来了新纪元。
流批一体是一种架构思想,这种思想说的是同一个业务,使用同一个sql逻辑,在既可以满足流处理计算同时也可以满足批处理任务的计算。
Flink Forward Asia 2020 三天的分享已经结束,在这次分享上,自己也收获到了很多。这里写一篇文章来记录下自己这次的收获和总结,从个人的视角以及理解,和大家一起分享下,当然,如果有理解错误的地方,也欢迎大家指出。
腾讯游戏广告业务对数据准确性和实时性均有诉求,因此数据开发团队分别搭建了离线及实时数仓。技术视角下,这是典型的Lambda架构,存在数据口径不一致、开发维护成本高等弊端。在降本增效的大背景下,我们针对结合计算引擎Flink与数据湖技术Iceberg建设流批一体实时湖仓做了较多的探索和实践,已经具备可落地可复制的经验。借助Flink框架支持批处理作业的能力,我们实现了将流处理层和批处理层的计算层面统一于Flink SQL,存储层面统一于Iceberg。
2020年,阿里巴巴实时计算团队提出“流批一体”的理念,期望依托Flink框架解决企业数据分析的3个核心问题,理念中包含三个着力点,分别是一套班子、一套系统、一个逻辑。
相信大数据人对这两年冉冉升起的新星 Flink 都不陌生,Flink是一款构建在数据流之上的有状态计算框架,通常被视为第三代大数据分析方案。
在Dataflow相关的论文发表前,大家都往往认为需要两套API来实现流计算和批计算,典型的实现便是Lambda架构。
在过去的这几年时间里,以 Storm、Spark、Flink 为代表的实时计算技术接踵而至。2019 年阿里巴巴内部 Flink 正式开源。整个实时计算领域风起云涌,一些普通的开发者因为业务需要或者个人兴趣开始接触Flink。
以Hudi、Iceberg、Paimon这几个框架为例,它们支持高效的数据流/批读写、数据回溯以及数据更新。具备一些传统的实时和离线数仓不具备的特性,主要有几个方面:
随着整体行业的数字化转型不断深入以及技术能力的不断提高,传统的 T+1 式(隔日)的离线大数据模式越来越无法满足新兴业务的发展需求,开展实时化的大数据业务,是企业深入挖掘数据价值的一条必经之路。
摘要:本文整理自 Shopee 研发专家李明昆,在 Flink Forward Asia 2022 流批一体专场的分享。本篇内容主要分为四个部分:
分析型系统进行联机数据分析,一般的数据来源是数据仓库,而数据仓库的数据来源为可操作型系统,可操作型 系统的数据来源于业务数据库中,那么我们常用的数据仓库的组成和架构一般如下图所示
湖仓一体实时电商项目是基于某宝商城电商项目的电商数据分析平台,本项目在技术方面涉及大数据技术组件搭建,湖仓一体分层数仓设计、实时到离线数据指标分析及数据大屏可视化,项目所用到的技术组件都从基础搭建开始,目的在于湖仓一体架构中数据仓库与数据湖融合打通,实现企业级项目离线与实时数据指标分析。在业务方面目前暂时涉及到会员主题与商品主题,分析指标有用户实时登录信息分析、实时浏览pv/uv分析、实时商品浏览信息分析、用户积分指标分析,后续还会继续增加业务指标和完善架构设计。
一般也不需要非常仔细地进行数据分层,数据直接通过Flink计算或者聚合之后将结果写MySQL/ES/HBASE/Druid/Kudu等,直接提供应用查询或者多维分析。
本文介绍了 SparkSQL 和 Flink 对于批流支持的特性以及批流一体化支持框架的难点。在介绍批流一体化实现的同时,重点分析了基于普元 SparkSQL-Flow 框架对批流支持的一种实现方式。希望对大家的工作有所帮助,也希望能对 DatasetFlow 模型作为框架实现提供一些启发。
传统意义上我们通常将数据处理分为离线数据处理和实时数据处理。对于实时处理场景,我们一般又可以分为两类,一类诸如监控报警类、大屏展示类场景要求秒级甚至毫秒级;另一类诸如大部分实时报表的需求通常没有非常高的时效性要求,一般分钟级别,比如10分钟甚至30分钟以内都可以接受。
相信身处于大数据领域的读者多少都能感受到,大数据技术的应用场景正在发生影响深远的变化: 随着实时计算、Kubernetes 的崛起和 HTAP、流批一体的大趋势,之前相对独立的大数据技术正逐渐和传统的在线业务融合。关于该话题,笔者早已如鲠在喉,但因拖延症又犯迟迟没有动笔,最终借最近参加多项会议收获不少感悟的契机才能克服懒惰写下这片文章。
嘉宾 | 付海涛 编辑 | 贾亚宁 Apache Flink 功能强大,支持开发和运行多种不同种类的应用程序。事实证明,Flink 已经可以扩展到数千核心,其状态可以达到 TB 级别,且仍能保持高吞吐、低延迟的特性。出于对云原生和 Flink 之间的关系,以及最新提出的流式数仓这个概念的好奇,我们特意邀请了付海涛老师。 付海涛老师目前在京东担任资深技术专家,日常工作包含 Flink 引擎的优化增强、容器环境任务的优化和智能运维等,一起来看看他的独家理解吧。 一、如何快速恢复作业 我们日常的工作中,
目前京东实时计算平台已经发展到了一定规模,且在 Flink 的应用上也积累了很多经验与反思。本次我们专访了京东数据分析优化部的算法工程师张颖老师,期待能从京东落地 Flink 的过程中获得一些应用 Flink 的经验和启发。
朋友圈很多朋友都看了,观众人数第一天还挺多,第二天大家好像热性消退,观看人减少了很多。
互联网和移动互联网技术开启了大规模生产、分享和应用数据的大数据时代。面对如此庞大规模的数据,如何存储?如何计算?各大互联网巨头都进行了探索。Google的三篇论文 GFS(2003),MapReduce(2004),Bigtable(2006)为大数据技术奠定了理论基础。随后,基于这三篇论文的开源实现Hadoop被各个互联网公司广泛使用。在此过程中,无数互联网工程师基于自己的实践,不断完善和丰富Hadoop技术生态。经过十几年的发展,如今的大数据技术生态已相对成熟,围绕大数据应用搭建的平台架构和技术选型也逐渐趋向统一。
2022年6月11日,DataFun将举办第二届线上DataFunSummit2022:多维分析架构峰会。本次峰会共设置9大主题论坛,并邀请目前工作在大数据多维分析领域的负责人、架构师、数据工程师和开源多维分析项目的核心成员分享,内容既涵盖了开源多维分析、新一代MPP数据库架构、数据湖分析型架构、实时多维分析等核心技术,也包含金融、互联网、交通、物流、工业、画像、营销等多个应用场景的实践经验。非常期待这次峰会的到来,同时也希望各位能从中收获更多的知识,结识更多的朋友,让大数据的多维分析能力达到新的高度! ▌
Building The Real-time Datalake at ByteDance (00:00:00-00:22:47)
在数字化转型驱动下,实时化需求日益成为金融业数据应用新常态。传统离线数仓“T+N”数据供给模式,难于满足“T+0”等高时效场景需求;依托Storm、Spark Streaming、Flink等实时计算框架提供“端到端”的实时加工模式,无法沉淀实时数据资产,存在实时数据复用性低、烟囱式垂直建设等不足。
本文来自作者在GitChat(ID:GitChat_Club)上的精彩分享,CSDN独家合作发布。 Apache Kylin是第一个来自中国的Apache顶级开源项目,连续两年获得了InfoWorld最佳开源大数据工具奖,2016年更是与Google TensorFlow一起获得该奖。 Apache Kylin的社区也非常活跃,目前Kylin被用于eBay、Expedia、网易、美团、百度、唯品会、京东、搜狐、OPPO等知名公司,在全球范围有200多家公司正式使用,而且都应用得非常大。 Kylin解决的
7月28日,以“数智进化,现在即未来”为主题的袋鼠云2022产品发布会于线上正式开幕。发布会上,袋鼠云宣布将集团进行全新升级:从“数字化基础设施供应商”,升级为“全链路数字化技术与服务提供商”,并由袋鼠云产研负责人思枢对外正式发布了全新的四大产品体系:数据智能分析与洞察平台“数雁EasyDigit”、低代码数字孪生平台EasyV、一站式大数据开发与治理平台“数栈DTinsight”和极速湖仓引擎“数驹DTengine”。
数据湖是一个集中式的存储库,允许你以任意规模存储多个来源、所有结构化和非结构化数据,可以按照原样存储数据,无需对数据进行结构化处理,并运行不同类型的分析对数据进行加工,例如:大数据处理、实时分析、机器学习,以指导做出更好地决策。
数据平台领域发展 20 年,逐渐成为每个企业的基础设施。作为一个进入“普惠期”的领域,当下的架构已经完美了吗,主要问题和挑战是什么?在 2023 年 AI 跃变式爆发的大背景下,数据平台又该如何演进,以适应未来的数据使用场景?
Flink 从 2014 年诞生之后,已经发展了将近 10 年,尤其是最近这些年得到了飞速发展。在全球范围内,Flink 已经成为了实时流计算的事实标准,成为大数据技术栈中不可或缺的一部分。在 2023 年终盘点之际,InfoQ 有幸采访了 Apache Flink 中文社区发起人、阿里云开源大数据平台负责人王峰(莫问),了解他对大数据技术栈的看法,以及 Flink 的进展和未来规划。
目前主流的数仓架构—— Lambda 架构,能够通过实时和离线两套链路、两套代码同时兼容实时数据与离线数据,做到通过批处理提供全面及准确的数据、通过流处理提供低延迟的数据,达到平衡延迟、吞吐量和容错性的目的。在实际应用中,为满足下游的即席查询,批处理和流处理的结果会进行合并。
2023 DAMS中国数据智能管理峰会-上海站将于3月31日盛大举办,峰会设置了大数据、数据治理&数据资产管理、信创数据库、信创运维、金融&运营商等五大主题专场,与大家一起探索大数据与云原生强强联合的方式,挖掘由此激发的软件发展和技术进步。其中,腾讯实时湖仓团队负责人邵赛赛老师将分享《实时湖仓一体在腾讯的实践落地》,内容概要提前剧透: 实时湖仓一体在腾讯的实践落地 议题要点及收获: 湖仓一体技术可以为业务带来原先Hadoop数仓所无法提供的能力,包括流批一体架构、行级更新、schema evolutio
8 月 27 日,ChunJun 社区联合 OceanBase 社区举办开源线下 Meetup,围绕「构建新型的企业级数仓解决方案」主题,多位技术大牛和现场爱好者汇聚一堂,畅所欲言。
8月27日,ChunJun社区联合OceanBase社区举办开源线下Meetup,围绕「构建新型的企业级数仓解决方案」主题,多位技术大牛和现场爱好者汇聚一堂,畅所欲言。
数据湖是一个集中式的存储库,允许你以任意规模存储多个来源、所有结构化和非结构化数据,可以按照原样存储数据,无需对数据进行结构化处理,并运行不同类型的分析,对数据进行加工,例如:大数据处理、实时分析、机器学习,以指导做出更好地决策。
在这篇博客中,我们将深入探讨Apache Kylin的工作原理、优势以及如何高效使用它来处理大数据。这篇文章是为了帮助那些对大数据分析、数据立方体、OLAP技术感兴趣的读者,无论是初学者还是行业专家。我们将探讨Kylin的关键特性,如预计算数据立方体、多维分析和海量数据支持,以及如何在实际项目中应用这些特性。
2022 年 11 月 26-27 日,Flink Forward Asia(FFA)峰会成功举行。Flink Forward Asia 是由 Apache 软件基金会官方授权、由阿里云承办的技术峰会,是目前国内最大的 Apache 顶级项目会议之一,也是 Flink 开发者和使用者的年度盛会。由于疫情原因,本届峰会仍采用线上形式。此外,本次峰会上还举行了第四届天池实时计算 Flink 挑战赛的颁奖仪式,4346 支参赛队伍中共有 11 支队伍经过层层角逐脱颖而出,最终收获了奖项。 FFA 大会照例总结了
day02-03_流批一体API 今日目标 流处理原理初探 流处理概念(理解) 程序结构之数据源Source(掌握) 程序结构之数据转换Transformation(掌握) 程序结构之数据落地Sink(掌握) Flink连接器Connectors(理解) 流处理原理初探 Flink的角色分配 JobMaster 老大, 主要负责 集群的管理, 故障的恢复, checkpoint 检查点设置 taskmanager worker 小弟, 具体负责任务的执行节点 cli
基于 Hive 的离线数仓往往是企业大数据生产系统中不可缺少的一环。Hive 数仓有很高的成熟度和稳定性,但由于它是离线的,延时很大。在一些对延时要求比较高的场景,需要另外搭建基于 Flink 的实时数仓,将链路延时降低到秒级。但是一套离线数仓加一套实时数仓的架构会带来超过两倍的资源消耗,甚至导致重复开发。
领取专属 10元无门槛券
手把手带您无忧上云