问题 什么是段错误?在 C 和 C++ 中有区别么?段错误和空悬指针有关系么? 回答 段错误是由于程序访问了本不属于它的的内存而引起的错误。 每当遇到段错误时,你就应该知道程序在内存访问上出错了。...比如,访问了已释放的变量、写入只读内存……在大多数语言中,段错误在本质上都是相同的,在 C 和 C++ 中也是一样。...要想重现段错误很简单,解引用一个空指针就会出现, int *p = NULL; *p = 1;
今天小编要跟大家分享的文章是关于Linux上错误段的核心转储问题。喜欢Linux操作系统,对Linux感兴趣的小伙伴快来看一看吧,希望通过本篇文章能够有所收获。 首先我们来说一说什么是段错误?...“段错误(segmentation fault)”是指你的程序尝试访问不允许访问的内存地址的情况。...这个“C++ 虚表指针”是我的程序发生段错误的情况。我可能会在未来的博客中解释这个,因为我最初并不知道任何关于 C++ 的知识,并且这种虚表查找导致程序段错误的情况也是我所不了解的。...当您的程序出现段错误,Linux 的内核有时会把一个核心转储写到磁盘。 当我最初试图获得一个核心转储时,我很长一段时间非常沮丧,因为 – Linux 没有生成核心转储!我的核心转储在哪里?...ASAN 另一种搞清楚您的段错误的方法是使用 AddressSanitizer 选项编译程序(“ASAN”,即 $CC -fsanitize=address)然后运行它。
注册一个信号捕捉函数,该函数由ANSI定义,由于历史原因在不同版本的Unix和不同版本的Linux中可能有不同的行为。因此应该尽量避免使用它,取而代之使用sigaction函数。...实际上是一个回调函数。 sa_mask 调用信号处理函数时,所要屏蔽的信号集合(信号屏蔽字)。注意:仅在处理函数被调用期间屏蔽生效,是临时性设置。实际上就是执行捕捉函数期间临时屏蔽的信号集。...(sa_flags设置为0时,使用sa_handler动作) sa_restorer 该元素是过时的,不应该使用,POSIX.1标准将不指定该元素。...实际上是这样的,未决信号集中使用某一位的0和1来记录信号是否被处理的,所以不管这个信号被发送了几次,未决信号集对应位也只能有一个1,后续也只能处理一次,它不会记录信号屏蔽期间总共发送了几次该信号,解除屏蔽后只会处理一次...2.2 内核是如何捕捉信号的 我们拿上面的程序为例,程序正常执行的时候,应该是一直在循环体内打印一句话,直到有信号产生 while(1) { printf("pid: %d\n", getpid
这些信号都有一些共同点:一是简单;而是不能携带大量信息;三是满足某个特设条件才发送。 信号是信息的载体,是Linux/UNIX 环境下,古老而经典的通信方式, 现在依然是主要的通信手段。...硬件异常产生,如:非法访问内存(段错误)、浮点型错误、除0(浮点数例外)、内存对齐出错(总线错误)、SIGPIPE 命令产生,如:kill命令 3.2 信号的状态 产生: 递达:递送并且到达进程。...3.3 信号的处理方式 执行默认动作 忽略(丢弃) 捕捉(调用户处理函数),捕获可以说是学习信号最重要的原因之一,当我们的程序产生比如段错误、总线错误等等,程序会异常终止,我们通过捕获可以捕获到这种错误...3.4 PCB中的信号相关信息 Linux内核的进程控制块PCB是一个结构体task_struct,除了包含进程id、状态、工作目录、用户id、组id、文件描述符表、还包含了信号相关的信息,主要指阻塞信号集和未决信号集...硬件异常信号 当程序出现硬件异常会产生信号: 除0操作,浮点型错误,8号信号SIGFPE。 非法访问内存,11号信号SIGSEGV,段错误。 总线错误,7号信号SIGNUS。 3.
摘要:当程序运行出现段错误时,目标文件没有调试符号,也没配置产生 core dump,如何定位到出错的文件和函数,并尽可能提供更详细的一些信息,如参数,代码等。.../a.out Segmentation fault (core dumped) 可以看到发生了段错误。...整行代码的意思要把 rdi 寄存器的某个偏移处的数据复制给 eax 寄存器,前面我们知道引起错误的原因是 用户态程序,读内存越界,原因是非法地址,而不是没权限,所以就是说读取 0xc0(%rdi) 发生错误...由此我们大概知道这里是读取函数的第一个参数的某个偏移量,推测第一个参数是一个结构,这个偏移量是结构的某个成员,而这个结构的地址目前是个无效地址,所以取偏移量会引起读取内存出错。...= -1) return -1 看函数名感觉是判断当前的流 FILE 是否是宽字节流,推测是从 FILE 结构里取信息,结果 FILE 结构地址非法,所以内存读取错误,直接就段错误了。
在windows系统下运行下面的代码可以正常运行但到了linux下,出现段错误通过gbd调试检测到是fwrite出现的问题(段错误提示在代码下面)通过打断点检测也确实是fwrite将数据写入流的时候不能写入出现的段错误...}void pipe(GLubyte* data){ cout<<"pipe start"<<endl; fwrite(data, lSize, 1, pPipe); //出现段错误
前言 在Linux系统中,程序运行时可能会遇到段错误(Segmentation Fault),这是一种常见的运行时错误,通常由于程序试图访问其内存空间中未分配(或不允许)的部分时发生。...段错误就是指访问的内存超出了系统所给这个程序的内存空间,通常这个值是由gd tr来保存的,他是一个48位的寄存器,其中的32位是保存由它指向的 gdt表,后13位保存 相应于gdt的下标,最后3位包括了程序是否在内存中以及程序的在...cpu中的运行级别,指向 的gdt是由以64位为一个单位的表,在这张表中就保存着程序运行的代码段以及数据段的 一旦一个程序发生了越界访问,cpu就会产生相应的保护,于是segmentation fault...就出现了通过上面的解释,段错误应该就是访问了不可访问的内存,这个内存区要么是不存在的,要么是受到系统保护的,还有可能是缺少文件或者文件损坏。...注意事项 及时更新系统和工具:确保使用的是最新版本的操作系统、编译器和调试工具。 详细记录错误信息:记录段错误发生时的完整堆栈跟踪和其他相关信息。 多角度分析:从代码、数据和运行环境多个角度分析问题。
Linux中的段 Intel 微处理器的段机制是从8086 开始提出的, 那时引入的段机制解决了从CPU 内部 16 位地址到20 位实地址的转换。...这不仅简化了Linux 内核的设计,而且为把Linux 移植到其他平台创造了 条件,因为很多RISC 处理器并不支持段机制。但是,对段机制相关知识的了解是进入Linux 内核的必经之路。...Linux 这样设计所带来的好处是显而易见的,Intel 的分 段部件对Linux 性能造成的影响可以忽略不计。...段寄存器与段选择子 段寄存器CS 、DS 、ES 、FS 、GS 、SS ,在实模式下时,段中存储的是段基地址,即内存段的起始地址。...而在保护模式下时,由于段基址已经存入了段描述符中,所以段寄存器中再存放段基址是没有意义的,在段寄 存器中存入的是一个叫作选择子的东西– selector。
忽略快 递(快递拿上来之后,扔掉床头,继续开一把游戏) 快递到来的整个过程,对你来讲是异步的,你不能准确断定快递员什么时候给你打电话 Linux中信号 在Linux操作系统中通过kill -l命令可查看所有的信号...: 信号是从1号开始的的,从信号1到信号31是普通信号,从信号35到信号64称之为实时信号,一般不考虑实时信号。...信号是Linux系统提供的一种向指定进程发送特定事件的一种方式,系统在收到信号时会做识别和处理。...进程有自己的PCB,是一个结构体,在结构体中有很多的成员变量,信号是给进程发送的,信号在进程中是用位图保存收到的信号的。...野指针错误:当前进程访问了非法内存地址,MMU会产生异常,内核将这个异常解释为SIGSEGV信号发送给进程。 总结: 终止进程实际上是释放进程的上下文数据,包括溢出标志数据或者其他异常数据。
1 前言 上一篇文章讲到信号的是怎样产生的: 通过kill命令:向指定进程发送指定的信号 键盘可以产生信号:我们常用的ctrl + c (2号信号)和 ctrl + (3号信号)都可以向进程发送信号 系统调用...是对应的6号信号(终止会打印Aborted!)其特殊的性质是可以被捕捉,但是进程还是会被终止掉,就是为了防止发生所有信号都被捕捉,没有信号可以终止的情况,9号信号和19号信号不能被自定义捕捉!!!...hanlder表是函数指针数组。handler表中的下标是信号编号,内容是收到对应信号会执行的方法。...对信号集的操作 我们认识了内核数据结构中的三张表,那么如果对它们进行操作呢?Linux操作系统为我们提供了用户级别的位图!...sigset_t是Linux操作系统提供的一个用户级数据类型,禁止用户直接修改位图!!!
注意handler表是函数指针表,传入的参数一定是函数指针类型!!!...内存中,操作系统在启动时就会维护一张函数指针数组(中断向量表),数组下标是中断号,数组内容是读磁盘函数,读网卡函数等方法。每个硬件都有自己的中断号,键盘也是。...来看Linux内核: 在操作系统的主函数中,首先是进行一些初始化(包括系统调用方法),然后就进入到了死循环!...有很多概念,所以简单单来讲:做到这些需要硬件CPU配合,在CPU中存在一个寄存器code semgent记录代码段的起始与终止地址。就可以通过两个cs寄存器来分别储存用户与操作系统的代码!...struct sigaction *oldact: 输出型参数,获取更改前的数据 我们写一段代码来看看: // 创建一个进行,进入死循环 // 对2号信号进行自定义捕捉 void handler(int
今天要分享的是Linux中的信号机制,信号是一种软件中断,是一种处理异步事件的方法,可以很好地在多个进程之间进行同步和简单的数据交换。...二、信号的注册和响应 前面讲了三种发送信号的方式,但是光发送信号还不够,对于接收方来说,还得对信号进行处理。 一般可以使用signal函数和sigaction函数来注册信号。...再看signal这个函数,他有两个输入参数,第一个是int类型,第二个是一个函数指针,另外,他返回的也是一个函数指针。 只有对函数指针非常熟悉,才能看懂上面这个表达式。...signal函数的第一个参数是信号类型,第二个参数是函数指针,也就是跳转到哪里去执行。也就是说,当收到第一个参数表示的信号之后,就会跳转到第二个参数指向的代码段去执行。...成员sa_sigaction 则是另一个信号处理函数,它有三个参数,可以获得关于信号的更详细的信息。
再有一点就是,参数出现错误并非本函数有问题,而是调用者传过来的实参有问题。assert 宏可以帮助我们定位错误,而不是排除错误。...这样只会使你的代码可移植性下降。 三、内存分配成功,但并未初始化 犯这个错误往往是由于没有初始化的概念或者是以为内存分配好之后其值自然为0。...五、内存泄漏 内存泄漏几乎是很难避免的,不管是老手还是新手,都存在这个问题。甚至包括windows,Linux 这类软件,都或多或少有内存泄漏。...也就是说,在程序中malloc 的使用次数一定要和free 相等,否则必有错误。这种错误主要发生在循环使用malloc 函数时,往往把malloc 和free 次数弄错了。...解决的办法是重新设计程序,改善对象之间的调用关系。 上面详细讨论了常见的六种错误及解决对策,希望读者仔细研读,尽量使自己对每种错误发生的原因及预防手段烂熟于胸。
查了一些资料,大体上说是由于Zlib版本造成的。查看了一下,发现最近确实安装了zlib的1.2.5版本,而造成了YUM的依赖问题。...尝试重新编译安装了zlib1.2.3,但是结果还是段错误。...仔细一看,发现zlib其实并没有将so安装到/usr/local/lib目录下,在/usr/lib下搜索了一下,找到了这个so,不清楚是什么时候安装的,拷贝到/usr/local/lib目录下,然后重新进行了一次编译安装...总结:问题应该出在zlib的版本更新上,但是应该和zlib软件本身的代码没什么关系,只是在软链接的配置上的改变,对yum造成了影响。...参考资料: 1、yum segmentation fault in centos 2、YUM段错误Centos Segmentation Fault @import url(http://www.cnblogs.com
这种方法效率低,而且有时不准确,比如一个系统中有多个进程,但A进程跑的B断点是,出现段错误,系统发出11号信号,造成B,C等进程接到11号信号反初始化而推出。...简单情况: 从OOPS知道PC指针,如果该进程是没有调用库,可以直接将该进程反汇编 objdump -D -S xxx进程名>124.txt 再从123.txt找到该PC指针位置对于的C代码行,即可定位...首先看pc指针地址确认是在死在内核态和用户态。...注意该进程以及改进程所在的库编译是必需加-g ,也不能strip,否则反汇编出来没有C代码的映射行 如果是在内核空间,可以通过堆栈回溯法进程回溯。该方法需要熟悉汇编,其次需要耐心,这里不详述。...方法三:coredump分析法 对于死机问题,某些情况下OOPS打印出来的信息不足以分析。coreDump给了个详细的方法。
我们可以看看在Linux系统下的信号: 信号时从 1 - 64 的数字对应信号(32 - 64 是实时信号,暂不考虑) 信号的生命周期可以划分为:预备 -> 产生 -> 保存 -> 处理 。...我们把这个过程研究明白就可以了 2 信号概念的基础储备 信号是Linux系统通过的一种向目标进程发送指定事件的方式。要做识别和处理。...那么OS是怎样知道进程进行非法操作的呢?以浮点数错误为例: 在CPU 运算中,数据是储存在内存中的。...段错误也是硬件的问题,空指针无法通过页表(实际上是MMU内存管理模块进行操作)映射到物理地址,会发生错误!...CR3 - 控制寄存器3: 包含页目录基址寄存器(PDBR),用于存储页目录表的物理地址,是分页机制的关键组成部分。 错误的地址会放入CR2中 , 触发故障。
被阻塞的信号产生时将保持在未决状态,直到进程解除对此信号的阻塞,才执行递达的动作。 注意:阻塞和忽略是不同的,只要信号被阻塞就不会递达,而忽略是在递达之后可选的一种处理动作。...常规信号在递达之前产生多次只计一次,也就是说,当在一段时间内有多个相同的信号到来但却来不及被处理时,在pending位图里只会记录一次。而实时信号在递达之前产生多次可以依次放在一个队列里。...SIG_SETMASK:设置当前信号屏蔽字为set所指向的值,相当于mask=set。 第二个参数set是我们设置的信号屏蔽字,第三个参数为输出型信号屏蔽字,是原来的信号屏蔽字。...3.3、设置信号屏蔽字的例子 下面是一个设置屏蔽2号信号,有解除屏蔽2号信号的例子。...= -1) { std::cout << "设置屏蔽字错误!"
对于父子进程来说,父进程可以通过wait或这waitpid函数来释放子进程的资源,也可以通过waitpid获得子进程的退出状态。那么这个实现过程是通过阻塞等待,或者不断的轮询。...那么这两个操作对于父进程来说都不是理想的,因此可以通过SIGCHLD信号来实现异步的操作。...也就是当子进程结束的时候通过SIGCHLD信号告诉父进程,然后父进程再去释放其资源,如果没有收到该信号也不影响父进程的运行。 ...,就可以捕捉到子进程的信号了。...status)) // 判断子进程是否是 通过信号退出 printf("child %d killed by the %dth signal\n", pid, WTERMSIG(status)
Linux下的程序的文件格式是ELF,里面分了各种段,有代码段、数据段、等。当运行这个程序时,系统也会给这个进程创建虚拟内存,然后把ELF中的数据分别加载到内存中的对应位置。...Ptrace Ptrace是一个Linux系统提供的一个功能强大的API接口,可以让一个进程跟踪或控制另一个进程,调试程序GDB就是在这个系统调用的基础上开发的。.../proc/pid/mem mem是内核创建的虚拟文件,是Linux的”一切皆文件”在进程上的体现,但是这个文件无法直接进行读取,需要先利用ptrace进行绑定操作。.../proc/pid/maps 下图是Linux的进程内存布局,这是系统给进程虚拟出的一个内存空间,并不是实际的物理内存,maps文件中就记录了虚拟内存的的每段地址分别对应什么数据。...这个文件的前三列分别是代码段、rodata数据段、和普通数据段,可以看到代码段的权限是读和执行,rodata数据段是只读,普通数据段可读写。
,使用memset将对象实体置为0之后,在使用delete析构该对象,就会出现莫名其妙的段错误。...段错误是指访问的内存超出了系统给这个程序所设定的内存空间,考虑到导致段错误的常见两种情况是: (1)访问系统保护的内存地址,如向地址0写入数据。 (2)内存越界,如数组越界。...当然还有其他的情况,如访问了不存在的内存地址。总而言之,段错误的出现是因为对内存空间的不正确操作。...基于对段错误的理解,本以为是对 dicOriTask处理过程中有不正确的操作,但是几经周折排查后并未发现错误,莫名其妙,原来问题很简单。是memset对类对象的误用。...这就是使用memset对类对象的误用。即delete一个被 memset为空的带有虚函数的类对象指针时,就会出现段错误。
领取专属 10元无门槛券
手把手带您无忧上云