首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    深入机器学习系列12-高斯混合模型

    高斯混合模型   现有的高斯模型有单高斯模型()和高斯混合模型()两种。从几何上讲,单高斯分布模型在二维空间上近似于椭圆,在三维空间上近似于椭球。在很多情况下,属于同一类别的样本点并不满足“椭圆”分布的特性,所以我们需要引入混合高斯模型来解决这种情况。 1 单高斯模型   多维变量服从高斯分布时,它的概率密度函数定义如下:   在上述定义中,是维数为的样本向量,是模型期望,是模型协方差。对于单高斯模型,可以明确训练样本是否属于该高斯模型,所以我们经常将用训练样本的均值代替,将用训练样本的协方差代替。假设训练

    09

    Must Know! 数据科学家们必须知道的 5 种聚类算法

    聚类是一种关于数据点分组的机器学习技术。给出一组数据点,我们可以使用聚类算法将每个数据点分类到特定的组中。理论上,同一组中的数据点应具有相似的属性或特征,而不同组中的数据点应具有相当不同的属性或特征(即类内差异小,类间差异大)。聚类是一种无监督学习方法,也是一种统计数据分析的常用技术,被广泛应用于众多领域。 在数据科学中,我们可以通过聚类算法,查看数据点属于哪些组,并且从这些数据中获得一些有价值的信息。今天,我们一起来看看数据科学家需要了解的 5 种流行聚类算法以及它们的优缺点。 一、K 均值聚类 K-

    08

    非线性回归中的Levenberg-Marquardt算法理论和代码实现

    看到一堆点后试图绘制某种趋势的曲线的人。每个人都有这种想法。当只有几个点并且我绘制的曲线只是一条直线时,这很容易。但是每次我加更多的点,或者当我要找的曲线与直线不同时,它就会变得越来越难。在这种情况下,曲线拟合过程可以解决我所有的问题。输入一堆点并找到“完全”匹配趋势的曲线是令人兴奋的。但这如何工作?为什么拟合直线与拟合奇怪形状的曲线并不相同。每个人都熟悉线性最小二乘法,但是,当我们尝试匹配的表达式不是线性时,会发生什么?这使我开始了一段数学文章之旅,stack overflow发布了[1]一些深奥的数学表达式(至少对我来说是这样的!),以及一个关于发现算法的有趣故事。这是我试图用最简单而有效的方式来解释这一切。

    02
    领券