桔妹导读:死锁是多线程和分布式程序中常见的一种严重问题。死锁是毁灭性的,一旦发生,系统很难或者几乎不可能恢复;死锁是随机的,只有满足特定条件才会发生,而如果条件复杂,虽然发生概率很低,但是一旦发生就非常难重现和调试。使用锁而产生的死锁是死锁中的一种常见情况。Linux 内核使用 Lockdep 工具来检测和特别是预测锁的死锁场景。然而,目前 Lockdep 只支持处理互斥锁,不支持更为复杂的读写锁,尤其是递归读锁(Recursive-read lock)。因此,Lockdep 既会出现由读写锁引起的假阳性预测错误,也会出现假阴性预测错误。
现在越来越多应用云原生化跑在k8s上面,k8s为应用提供了自动限制、自动重启、服务发现等各种能力。这些能力让开发减少了对运维相关属性的关注,但也让一些开发把一些错误当成了特性来使用,比如针对一些无状态的服务,利用 OOM 和自动重启来恢复。这看起来大多数时候似乎没有问题,借助自动恢复,OOM的应用会被重新来起来工作。但这种坏习惯会让系统在某些时候变得更不稳定,比如 OOM Killer 导致的死锁问题。
操作系统对内存的使用是按段的,例如: 我们编写的一个程序被操作系统加载到内存是按照数据段,代码段等形式分段载入。而操作系统自身的代码也是按段载入的,为了确保安全性,我们用户编写的程序是不能直接访问操作系统的相关段的,因此需要给不同段赋予不同的特权级。
在Linux系统中,进程间的同步和通信是一个复杂而关键的话题。为了维护系统资源的正确访问和分配,Linux提供了多种同步机制,其中锁机制是其中之一。然而,当多个进程试图同时访问同一资源时,可能会出现死锁或竞争条件。为了有效地诊断和解决这些问题,Linux提供了lslocks命令,该命令可以显示系统上的活动锁信息,帮助系统管理员和开发者深入了解系统资源的使用情况。
Linux 6.8 内核已经升级至 Rust 1.75,而最新的补丁则将内核的 Rust 代码迁移到 Rust 1.76,并准备好迎接即将发布的 Rust 1.77。 Rust 1.77 稳定了内核 Rust 代码使用的单字段 "offset_of" 功能,并添加了一个"--check-cfg" 选项,内核 Rust 代码未来可能会过渡到这个选项。这符合 Rust for Linux 跟踪上游 Rust 版本升级的政策,直到确定了所有使用的功能都被认为是稳定的最低版本为止。预计将在即将到来的 Linux 6.9 内核合并窗口中进行对 Rust 1.77 的升级。
廖威雄,目前就职于珠海全志科技股份有限公司从事linux嵌入式系统(Tina Linux)的开发,主要负责文件系统和存储的开发和维护,兼顾linux测试系统的设计和持续集成的维护。
在多年前,linux还没有支持对称多处理器SMP的时候,避免并发数据访问相对简单。
所谓实时,就是一个特定任务的执行时间必须是确定的,可预测的,并且在任何情况下都能保证任务的时限(最大执行时间限制)。实时又分软实时和硬实时,所谓软实时,就是对任务执行时限的要求不那么严苛,即使在一些情况下不能满足时限要求,也不会对系统本身产生致命影响,例如,媒体播放系统就是软实时的,它需要系统能够在1秒钟播放24帧,但是即使在一些严重负载的情况下不能在1秒钟内处理24帧,也是可以接受的。所谓硬实时,就是对任务的执行时限的要求非常严格,无论在什么情况下,任务的执行实现必须得到绝对保证,否则将产生灾难性后果,例如,飞行器自动驾驶和导航系统就是硬实时的,它必须要求系统能在限定的时限内完成特定的任务,否则将导致重大事故,如碰撞或爆炸等。
在实践的道路上走的太远,就需要回头看一下理论。操作系统,可以说是基础知识中的重中之重。
死锁指两个或更多进程或线程因相互等待对方释放资源而互相阻塞,从而导致系统中所有的进程或线程都无法继续运行的情况。
这个事情很奇怪,我不觉得它提出来的Possible unsafe locking scenario真的会死锁啊。
今晚我的一个朋友childofcuriosity喊我写操作系统,然而我什么都不会。。。
本系列将按照类别对题目进行分类整理,重要的地方标上星星,这样有利于大家打下坚实的基础。
Ingo Molnar 的实时补丁是完全开源的,它采用的实时实现技术完全类似于Timesys Linux,而且中断线程化的代码是基于TimeSys Linux的中断线程化代码的。这些实时实现技术包括:中断线程化(包括IRQ和softirq)、用Mutex取代spinlock、优先级继承和死锁检测、等待队列优先级化等。
Linux操作系统概述 Q1.什么是GNU?Linux与GNU有什么关系? A: 1)GNU是GNU is Not Unix的递归缩写,是自由软件基金会(Free Software Foundation,FSF)的一个项目,该项目已经开发了许多高质量的编程工具,包括emacs编辑器、著名的GNU C和C++编译器(gcc和g++); 2)Linux的开发使用了许多GNU工具,Linux系统上用于实现POSIX.2标准的工具几乎都是由GNU项目开发的;Linux内核、GNU工具以及其它一些自由软件组成
并发就是在一段时间内,多个任务都会被处理;但在某一时刻,只有一个任务在执行。单核处理器可以做到并发。比如有两个进程A和B,A运行一个时间片之后,切换到B,B运行一个时间片之后又切换到A。因为切换速度足够快,所以宏观上表现为在一段时间内能同时运行多个程序。
在主流的Linux内核中包含了几乎所有现代的操作系统具有的同步机制,这些同步机制包括:原子操作、信号量(sem aphore)、读写信号量(rw_sem aphore)、spinlock、BKL(Big Kernel Lock)、rwlock、brlock(只包含在2.4内核中)、RCU (只包含在2.6内核中)和seqlock(只包含在2.6内核中)
导读 | 第27届国际计量大会宣布最迟不晚于2035年取消引入闰秒,这一消息引起轰动。上一次闰秒产生,对Reddit、Mozilla、FourSquare等都产生了一定的问题,其中Reddit宕机时间超过1个半小时!本栏目特邀腾讯后台开发工程师陶松桥,带你是深入了解闰秒的来源及其影响,并介绍各类系统常见的闰秒处理方法,其中会分享TencentOS Server 操作系统的解决方案。 闰秒从何而来 世界上有几种计量时间的方式: 世界时(UT1):是一种天文计量的方式,天文学家通过观测地球的自转,并将自转一周
我们之前的文章都是基于“裸机”系统,这种情况适合比较简单的示例,但如果我们要使用更先进的处理系统并最大限度地发挥 Zynq SoC 的双核 ARM Cortex-A9 MPCore 处理器的优势,我们需要一个操作系统。有很多系统可供选择:
大家好,我是 cxuan,我之前汇总了一下关于操作系统的面试题,最近又重新翻阅了一下发现不是很全,现在也到了面试季了,所以我又花了一周的时间修订整理了一下这份面试题,这份面试题可以吊打市面上所有的操作系统面试题了,不是我说,是因为我系统查过,如果有不相信的大佬,欢迎狠狠的打我脸。
楼主本来是要继续写服务器并发的,但是后续的服务器相关点都和进程线程联系在一起,所以先把进程线程相关内容写完吧! 这次只写进程线程的概述,实际操作后续博文逐一代码实现。 进程同步or进程通信/线程同步or线程通信? 这两组概念迷惑我至今,网上和书籍对这个的描述也是爱用啥用啥的感觉,今天又重新理了一遍。 什么是同步:同步就是数据保持一致,无论是进程还是线程,都是实现了代码执行流程的分支,多个分支同时进行。多个分支互不干扰,但是又有些数据需要共享,让这些数据对所有分支保持一致即为同步。 什么是
一、进程 1.1 多道程序设计 允许多个程序同时进入内存并运行,提高CPU的利用率,目的是提高系统效率 a图内存中有四个程序,串行执行,因为这里只有一个程序计数器。 当有了多道程序技术之后
栈:是一种可以实现“先进后出”的存储结构。操作仅限于栈的顶部。常应用于实现递归功能方面的场景
如果程序直接引用物理地址,可能导致内存只能使用一个程序。因为其他程序也运行的话,可能会直接占用前一个程序的物理地址。
并行指两个或者多个事件同一时刻发生,并发是两个或者多个事件在同一时间间隔发生; 并行是在不同实体上的多个事件,并发是在同一实体上的多个事件(如单核CPU轮转时间片)。
继上篇中科大软件学院硕士:实习秋招百多轮面试总结(上)收获了大家一致好评后,今天继续分享其它公司的面试经验和心得体会,希望可以帮助打算找工作或跳槽的朋友们~
一,softlockup: watchdog软狗/软锁----用于检测系统调度是否正常。 能响应中断,但调度异常。
I/O 密集型应用、计算密集型应用应该用什么实现?进程、内核线程、用户态线程、协程它们的原理和应用场景又是什么?如何组合它们才能让机器性能达到最优?它们的死锁和竞态又是什么?如何清晰地表示它们之间的关系?希望读完本文后,能帮您解答这些疑惑!
nfconntrack是netfilter中的重要模块,很多netfilter的功能都依赖于这个模块,如NAT等。而利用linux来构建的网络设备,可以说,其80%的功能都依赖于nfconntrack实现的会话管理。所以,会话管理的性能优劣会对网络设备的性能产生直接的影响。
使用linux操作系统,难免遇到一些软件”卡壳”的问题,这时就需要使用linux下强大的kill命令来结束相关进程。这在linux系统下是极其容易的事情,你只需要kill xxx即可,这里xxx代表与此软件运行相关的进程PID号。 首先,我们需要使用linux下另外一个ps命令查找与进程相关的PID号:ps aux | grep program_filter_word ps a 显示现行终端机下的所有程序,包括其他用户的程序。 ps -A 显示所有程序。 ps c 列出程序时,显示每个程序真正的指令名称,而不包含路径,参数或常驻服务的标示。 ps -e 此参数的效果和指定”A”参数相同。 ps e 列出程序时,显示每个程序所使用的环境变量。 ps f 用ASCII字符显示树状结构,表达程序间的相互关系。 ps -H 显示树状结构,表示程序间的相互关系。 ps -N 显示所有的程序,除了执行ps指令终端机下的程序之外。 ps s 采用程序信号的格式显示程序状况。 ps S 列出程序时,包括已中断的子程序资料。 ps -t<终端机编号> 指定终端机编号,并列出属于该终端机的程序的状况。 ps u 以用户为主的格式来显示程序状况。 ps x 显示所有程序,不以终端机来区分。 最常用的方法是ps aux,然后再通过管道使用grep命令过滤查找特定的进程,然后再对特定的进程进行操作。 其次,使用kill命令结束进程:kill xxx 1)作用 kill命令用来中止一个进程。 2)格式 kill [ -s signal | -p ] [ -a ] pid … kill -l [ signal ] 3)参数 -s:指定发送的信号。 -p:模拟发送信号。 -l:指定信号的名称列表。 pid:要中止进程的ID号。 Signal:表示信号。 4)说明 进程是Linux系统中一个非常重要的概念。Linux是一个多任务的操作系统,系统上经常同时运行着多个进程。我们不关心这些进程究竟是如何分配的,或者是内核如何管理分配时间片的,所关心的是如何去控制这些进程,让它们能够很好地为用户服务。 Linux操作系统包括三种不同类型的进程,每种进程都有自己的特点和属性。交互进程是由一个Shell启动的进程。交互进程既可以在前台运行,也可以在后台运行。批处理进程和终端没有联系,是一个进程序列。监控进程(也称系统守护进程)是Linux系统启动时启动的进程,并在后台运行。例如,httpd 是著名的Apache服务器的监控进程。 kill命令的工作原理是,向Linux系统的内核发送一个系统操作信号和某个程序的进程标识号,然后系统内核就可以对进程标识号指定的进程进行操作。比如在top命令中,我们看到系统运行许多进程,有时就需要使用kill中止某些进程来提高系统资源。在讲解安装和登陆命令时,曾提到系统多个虚拟控制台的作用是当一个程序出错造成系统死锁时,可以切换到其它虚拟控制台工作关闭这个程序。此时使用的命令就是kill,因为kill是大多数Shell内部命令可以直接调用的。 5)应用实例 (1)强行中止(经常使用杀掉)一个进程标识号为324的进程: #kill -9 324 (2)解除Linux系统的死锁 在 Linux中有时会发生这样一种情况:一个程序崩溃,并且处于死锁的状态。此时一般不用重新启动计算机,只需要中止(或者说是关闭)这个有问题的程序即可。当kill处于X-Window界面时,主要的程序(除了崩溃的程序之外)一般都已经正常启动了。此时打开一个终端,在那里中止有问题的程序。比如,如果Mozilla浏览器程序出现了锁死的情况,可以使用kill命令来中止所有包含有Mozolla浏览器的程序。首先用ps命令查找该程序的 PID,然后使用kill命令停止这个程序: #kill -SIGKILL XXX 其中,XXX是包含有Mozolla浏览器的程序的进程标识号。 (3)使用命令回收内存 我们知道内存对于系统是非常重要的,回收内存可以提高系统资源。kill命令可以及时地中止一些”越轨”的程序或很长时间没有相应的程序。例如,使用top命令发现一个无用 (Zombie) 的进程,此时可以使用下面命令: #kill -9 XXX 其中,XXX是无用的进程标识号。 然后使用下面命令: #free 此时会发现可用内存容量增加了。 (4)killall命令 Linux下还提供了一个kil
连接跟踪(也叫会话管理)是状态防火墙关键核心,也是很多网元设备必不可少的一部分。各厂商的实现原理基本雷同,只是根据各自的业务进行修改和优化。其中,还有不少厂商干脆是基于Linux内核实现的。下面,我们就来看看Linux内核中连接跟踪的几个要点。
操作系统本质上是一个运行在计算机上的软件程序 ,管理着计算机硬件和软件资源,为计算机硬件和软件提供了一种中间层,使应用软件和硬件进行分离,屏蔽了硬件层的复杂性,让我们把关注点更多放在软件应用上。操作系统的主要功能有:
1、一切皆文件; 2、单一目的的小程序; 3、组合小程序完成复杂任务; 4、文本文件保存配置信息; 5、尽量避免捕获用户接口; 6、提供机制,而非策略。 自从Linux一诞生就注定了其成为经典的命运。 在 这个日异强调知识产权的年代,源代码仅仅只掌握在很少一部分人,只有他们参与其研发过程,这对于商 品化一种软件产品无疑是一件好事情。但是它却限制了大 多数想一探源码究竟的爱好者求索的步伐。开放源代码 给众多爱好者带来了福音,它让我们看到了一个全球协作的力量。不论你身在何处,只要你的PC可以连接上 Intern
例如,用户运行自己的程序,系统就创建一个进程,并为它分配资源,包括各种表格、内存空间、磁盘空间、I/O设备等。
多线程、单线程、进程、任务、线程池...等等一些术语到底是什么意思呢?到底什么是多线程?它到底怎么用?我们一起来学习一下多线程的处理
自旋锁是专为防止多处理器并发(实现保护共享资源)而引入的一种锁机制。自旋锁与互斥锁比较类似,它们都是为了解决对某项资源的互斥使用。无论是互斥锁,还是自旋锁,在任何时刻,最多只能有一个保持者,也就说,在任何时刻最多只能有一个执行单元获得锁。但是两者在调度机制上略有不同。对于互斥锁,如果资源已经被占用,资源申请者只能进入睡眠状态。但是自旋锁不会引起调用者睡眠,如果自旋锁已经被别的执行单元保持,调用者就一直循环在那里看是否该自旋锁的保持者已经释放了锁,“自旋”一词就是因此而得名。自旋锁在内核中大量应用于中断处理等部分(对于单处理器来说,防止中断处理中的并发可简单采用关闭中断的方式,即在标志寄存器中关闭/打开中断标志位,不需要自旋锁)。
如果觉得本篇文章对你有帮助,在【收藏】的时候,可以【双击】下屏幕支持下作者,这个对我真的很重要!
这篇文章讨论了使用eBPF(扩展的伯克利包过滤器)来分析和基准测试代码。eBPF是一种强大的技术,允许开发人员在无需更改内核源代码或添加额外模块的情况下,在Linux内核中运行沙盒程序。这种功能特别适用于性能监控、安全性和网络管理。
当有了多道程序技术之后就得到了b图,每个程序各自独立的占用一个逻辑程序计数器,达到并发执行效果
进程是资源分配的基本单位,线程是 CPU 调度的基本单位。进程拥有独立的地址空间,线程是共享内存地址的。进程切换的开销比线程要大。
Linux 5.14于14小时之前发布了,而我5.13的总结还没有写出,我早觉得有写一点东西的必要了,这虽然于搬砖的码农毫不相干,但在追求进步的工程师那里,却大抵只能如此而已。为了不忘却的纪念,我们列出5.13内核的数个激动人心的新特性:
死锁是指多个进程(线程)因为长久等待已被其他进程占有的的资源而陷入阻塞的一种状态。当等待的资源一直得不到释放,死锁会一直持续下去。死锁一旦发生,程序本身是解决不了的,只能依靠外部力量使得程序恢复运行,例如重启,开门狗复位等。 所以内核中设计了内核死锁检测机制,一旦发现死锁进程,就重启OS,快刀斩乱麻解决问题。之所以使用重启招数,还是在于分布式系统中可以容忍单点崩溃,不能容忍单点进程计算异常,否则进行死锁检测重启OS就得不偿失了。
https://www.cnblogs.com/arnoldlu/p/8580387.html
因为也许我当时因为要实现梦想只有一条途径,可如果你选择了一条路,这并不意味着你要放弃其他的方式。——《跳出我天地》
答:栈溢出发生的时候,栈顶指针(SP - Stack Pointer)一定会超出栈的范围,所以也可以在发生线程切换的时候,检测SP指向的地址是否超过了栈的内存限定。
锁可以属于本地系统上的进程,也可以属于本地系统是NFS服务器的NFS客户端系统上的进程。
领取专属 10元无门槛券
手把手带您无忧上云