首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

算法与数据结构之十----内核中的链表操作学习

/**************************************************************** 文件内容:内核之链队操作 版本V1.0 作者:HFL 时间:2013-12-22 说明:用户态中链表每个节点包含数据域和指针域,而内核态是每个数据中包含链表 因此内核态链表一般是嵌套在某个包含数据成员的结构体来实现。 内核的链表应用非常广泛:进程管理,定时器,工作队列,运行队列。总之 内核对于多个数据的组织和多个熟悉的描述都是通过链表串起来的。  *****************************************************************/  #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/list.h> MODULE_DESCRIPTION("My Module"); MODULE_ALIAS("My module"); MODULE_LICENSE("GPL"); MODULE_AUTHOR("HFL21014"); struct student {     char name[100];     int counter;     struct list_head list; }; struct student *Mystudent; struct student *Temp_student; struct list_head student_list; struct list_head *pos; int Kernel_list_init() { int j = 0; INIT_LIST_HEAD(&student_list); Mystudent = kmalloc(sizeof(struct student)*5,GFP_KERNEL); memset(Mystudent,0,sizeof(struct student)*5); for(j=0;j<5;j++) {        sprintf(Mystudent[i].name,"Student%d",j+1);       Mystudent[j].counter = j+1;      list_add( &(Mystudent[j].list), &student_list); }  list_for_each(pos,&student_list) //遍历整个内核链表,pos其实就是一个for循环标量。中间临时使用,既不输入也不输出 { Temp_student = list_entry(pos,struct student,list);  printk("hello,my student %d  name: %s\n",Temp_student->counter,Temp_student->name); } return 0; } void Kernel_list_exit() { int k ; /* 模块卸载是要删除链表,并释放内存 */ for(k=0;k<10;jk++) { list_del(&(Mystudent[k].list));      } kfree(Mystudent); } module_init(Kernel_list_init);

03
您找到你想要的搜索结果了吗?
是的
没有找到

Cgroup CPU Quota技术的不足

前言 cgroup作为Linux上广泛应用的一个功能,用来限制、控制与分离一个进程组群的资源。在内核Linux-4.14上,支持了如下类型(源代码参考https://github.com/torvalds/linux/blob/v4.14/include/linux/cgroup_subsys.h): SUBSYS(cpuset) SUBSYS(cpu) SUBSYS(cpuacct) SUBSYS(io) SUBSYS(memory) SUBSYS(devices) SUBSYS(freezer) SUBSYS(net_cls) SUBSYS(perf_event) SUBSYS(net_prio) SUBSYS(hugetlb) SUBSYS(pids) SUBSYS(rdma) SUBSYS(debug) 查看目前实际打开了其中的一部分: # cat /boot/config-`uname -r` | grep CONFIG_CGROUP_ CONFIG_CGROUP_WRITEBACK=y CONFIG_CGROUP_SCHED=y CONFIG_CGROUP_PIDS=y # CONFIG_CGROUP_RDMA is not set CONFIG_CGROUP_FREEZER=y # CONFIG_CGROUP_HUGETLB is not set CONFIG_CGROUP_DEVICE=y CONFIG_CGROUP_CPUACCT=y CONFIG_CGROUP_PERF=y CONFIG_CGROUP_BPF=y # CONFIG_CGROUP_DEBUG is not set CONFIG_CGROUP_NET_PRIO=y CONFIG_CGROUP_NET_CLASSID=y 尤其是其中的CPU的Quota控制,在以docker为代表的PaaS中大显身手。然而,这并不意味着cgroup的CPU Quota控制就是完美的。例如,希望一个进程占用的CPU不超过200%,那么它的真实的CPU占用是怎样的呢?接下来,作者会构造一段代码,可以算是一种极端场景,来证实这个问题确实存在。

02

Android后台杀死系列之三:LowMemoryKiller原理(4.3-6.0)

本篇是Android后台杀死系列的第三篇,前面两篇已经对后台杀死注意事项,杀死恢复机制做了分析,本篇主要讲解的是Android后台杀死原理。相对于后台杀死恢复,LowMemoryKiller原理相对简单,并且在网上还是能找到不少资料的,不过,由于Android不同版本在框架层的实现有一些不同,网上的分析也多是针对一个Android版本,本文简单做了以下区分对比。LowMemoryKiller(低内存杀手)是Andorid基于oomKiller原理所扩展的一个多层次oomKiller,OOMkiller(Out Of Memory Killer)是在Linux系统无法分配新内存的时候,选择性杀掉进程,到oom的时候,系统可能已经不太稳定,而LowMemoryKiller是一种根据内存阈值级别触发的内存回收的机制,在系统可用内存较低时,就会选择性杀死进程的策略,相对OOMKiller,更加灵活。在详细分析其原理与运行机制之前,不妨自己想一下,假设让你设计一个LowMemoryKiller,你会如何做,这样一个系统需要什么功能模块呢?

05

CAN 接口测试[通俗易懂]

1.sudo modprobe vcan 加载虚拟can模块 2.sudo ip link add dev vcan0 type vcan 添加vcan0网卡 3.ifconfig -a 可以查到当前can网络 can0 can1,包括收发包数量、是否有错误等等 4.ip link set can0 up type can bitrate 800000 //ip link set can0 type can –help 设置can0的波特率为800kbps,CAN网络波特率最大值为1Mbps 5.ip link set can0 up type can bitrate 800000 loopback on 设置回环模式,自发自收,用于测试是硬件是否正常,loopback不一定支持 6. ip link set can0 down 关闭can0 网络 7.cansend can0 0x11 0x22 0x33 0x44 0x55 0x66 0x77 0x88 发送默认ID为0x1的can标准帧,数据为0x11 22 33 44 55 66 77 88 每次最大8个byte 8.cansend can0 -i 0x800 0x11 0x22 0x33 0x44 0x55 0x66 0x77 0x88 -e -e 表示扩展帧,CAN_ID最大29bit,标准帧CAN_ID最大11bit -i表示CAN_ID 9. cansend can0 -i 0x02 0x11 0x12 –loop=20 –loop 表示发送20个包 10.candump can0 接收CAN0数据

03
领券