如果你想从GitHub安装Theano的前沿或开发版本,请确保你正在阅读此页面的最新版本。
为了进行强化学习研究,我最近购置了一台基于 Ubuntu 和英伟达 GPU 的深度学习机器。尽管目前在网络中能找到一些环境部署指南,但目前仍然没有全面的安装说明。另外,我也不得不阅读了很多文档来试图理解安装细节——其中的一些并不完整,甚至包含语法错误。因此,本文试图解决这个问题,提供一个详尽的软件环境安装指南。
为了研究强化学习,最近购置了一台基于 Ubuntu 和英伟达 GPU 的深度学习机器。尽管目前在网络中能找到一些环境部署指南,但目前仍然没有全面的安装说明。另外,我也不得不阅读了很多文档来试图理解安装细节——其中的一些并不完整,甚至包含语法错误。本文试图提供一个详尽的软件环境安装指南。 操作系统(Ubuntu) 4 种驱动和库(GPU 驱动、CUDA、cuDNN 和 pip) 5 种 Python 深度学习库(TensorFlow、Theano、CNTK、Keras 和 PyTorch) 这些软件之间的互
来源:机器之心 本文长度为2800字,建议阅读5分钟。 本文向你解释如何在一台新装的 Ubuntu 机器上安装 Python 和 Nvidia 硬件驱动、各类库和软件包。 为了进行强化学习研究,我最近购置了一台基于 Ubuntu 和英伟达 GPU 的深度学习机器。尽管目前在网络中能找到一些环境部署指南,但目前仍然没有全面的安装说明。另外,我也不得不阅读了很多文档来试图理解安装细节——其中的一些并不完整,甚至包含语法错误。因此,本文试图解决这个问题,提供一个详尽的软件环境安装指南。 本文将指导你安装 操作
关键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第一 【Python】:排名第三 【算法】:排名第四 原文:https://medium.com/@dyth/deep-learning-software-installation-guide-d0a263714b2 后台回复关键词:20171019 下载PDF整理版教程 为了研究强化学习,最近购置了一台基于 Ubuntu 和英伟达 GPU 的深度学习机器。尽管目前在网络中能找到一些环境部署指南,但目前仍然没有全面的安装说明。另外,我也不
今天开始,Lady向各位介绍一个朋友阿星(Ashing)以及他的机器学习读书笔记! 阿星也是我们手撕深度学习算法微信群的热心群友!接下来,Lady我也会陆续分享这个微信群里大家讨论的话题。 本篇文
选自Medium 机器之心编译 参与:路雪、李泽南 在搭建深度学习机器之后,我们下一步要做的就是构建完整的开发环境了。本文将向你解释如何在一台新装的 Ubuntu 机器上安装 Python 和 Nvidia 硬件驱动、各类库和软件包。 为了进行强化学习研究,我最近购置了一台基于 Ubuntu 和英伟达 GPU 的深度学习机器。尽管目前在网络中能找到一些环境部署指南,但目前仍然没有全面的安装说明。另外,我也不得不阅读了很多文档来试图理解安装细节——其中的一些并不完整,甚至包含语法错误。因此,本文试图解决这个问
如果你想要编译的代码更快(推荐),确保你安装了g++(Windows/Linux)或Clang(OS X)。
导读:NumPy是数据计算的基础,更是深度学习框架的基石。但如果直接使用NumPy计算大数据,其性能已成为一个瓶颈。
有一些平台安装Python机器学习环境可能很麻烦。 首先你得安装Python,然后安装许多软件包这很容易把初学者搞懵。 在本教程中,你将学会如何用Anaconda设置Python机器学习开发环境。 完成本教程后,你将拥有一个Python工作环境,可以让你学习、练习和开发机器学习和深度学习软件。 本说明适用于Windows,Mac OS X和Linux平台。我将在OS X上演示它们,因此你可能会看到一些mac对话框和文件扩展名。 更新 2017/03:注:你需要一个Theano或TensorFlow
原文标题:Setting up a Deep Learning Machine from Scratch (Software) 原文链接:https://github.com/saiprashanths/dl-setup 译者:刘翔宇 审校:赵屹华 责编:周建丁(zhoujd@csdn.net) 这是一篇为机器搭建深度学习研究环境的详细指南,包括驱动程序、工具和各种深度学习框架的安装指导。在64位Ubuntu 14.04的机器上使用Nvidia Titan X进行测试。 还有一些有类似目的的指南。一些内
安装theano,提前清空自己的python环境吧,坑太多了,anaconda会自动安装path
2.安装完anaconda后打开anaconda promp命令行promp,输入conda list.
Theano :python编写的深度学习软件包,实现的深度学习的常用算法,优点:集成了GPU开发环境,以及CUDA工具包;缺点:开发时间比较早,代码灵活性差,模块化功能不强
本教程基于安卓手机平台,在PyDroid3软件上,使用Python3语言配合Keras框架开发深度学习。本文章主要涉及在手机上开发环境的搭建,以及简单的示例代码,如果想深入研究开发,还需要读者自己花些功夫了。不废话,开始教程。。
【新智元导读】神经网络基于样本图像的训练为模糊图像补充细节,从而把模糊图像变高清。它不能把你的照片重建成一模一样的高清版。这只有好莱坞大片才有可能做到——但使用深度学习和神经增强(Neural Enhance)实现的“创造性 AI”作品同样很酷! 想得到如《犯罪现场调查》中CSI实验室那种提高照片清晰度的技术吗?感谢深度学习和神经增强(#NeuralEnhance)技术,现在已经能够训练一个神经网络把照片放大 2 倍,甚至 4 倍。通过增加神经元数目或使用与你的低分辨率图像相似的数据集进行训练,甚至能得到更
大数据文摘作品,转载要求见文末 原作者 | Daniel Jeffries 编译 | 刘云南,一针,Saint,Yawei Xia 今天我们将建立我们自己的深度学习终极大杀器。 我们会搜集最好的精华,并且把他们组合成数字终结者。 我们也会讨论如何把最新的深度学习软件架构一步步安装到Ubuntu Linux 16.04中。 在这台机器上运行神经网络就像热激光束穿过黄油一样快捷流畅。你不用花超过129,000美元来购买 Nvidia’s DGX-1,这个AI超级计算机可以放在一个盒子里。我马上要给你展示它的性能
【AI100 导读】学习人工智能到底要不要学好数学,这俨然已经成了一个争议话题了?之前 AI100 刊发了本系列的前两篇文章,也发表了作者子白的《放弃幻想,搞 AI 必须过数学关》,不知你是否有自己的
导读:Python本身的数据分析功能并不强,需要安装一些第三方扩展库来增强其相应的功能。本文将对NumPy、SciPy、Matplotlib、pandas、StatsModels、scikit-learn、Keras、Gensim等库的安装和使用进行简单的介绍。
原文出处:http://www.cnblogs.com/jacklu/p/6377820.html
Python 是一种开源编程语言,用于 Web 编程、数据科学、人工智能和许多科学应用。学习 Python 使程序员能够专注于解决问题,而不是专注于语法,其丰富的库赋予它完成伟大任务所需的力量。
如果你用yum/apt-get安装NumPy/SciPy,用pip/easy_install更新NumPy/SciPy并不总是一个好主意。这可能使Theano因BLAS的问题而崩溃。发布中包含的NumPy/SciPy版本有时与更新版本的BLAS相关联。使用yum/apt-get/pip/easy_install安装NumPy/SciPy开发包时不会与新版本重新一起编译。要解决可能的崩溃,你可以按如下方式清除Theano缓存:
本系列将分为 8 篇 。今天是第一篇 ,工欲善其事必先利其器 ,先简单讲讲当前的主流深度学习框架 TensorFlow 及其安装方法 。
说明:系统是unbuntu14.04LTS,32位的操作系统,以前安装了python3.4,现在想要安装theano和keras。步骤如下:
|懒人阅读:你可以调用keras库中的模块迅速实现各种深度学习模型,在tensorflow、Theano以及CNTK中均可支持, 适合新手体验、快速验证想法。
选自Github 机器之心编译 参与:蒋思源、刘晓坤 本文从最基本的依赖项开始,依次配置了 VS 2015、Anaconda 4.4.0、CUDA 8.0.61 和 cuDNN v5.1 等基本环境,然后再从 Keras 出发安装 Theano、TensorFlow 和 CNTK 以作为其后端。在完成配置深度学习框架后,本文分别利用这三个框架作为 Keras 后端在 CPU 和 GPU 上训练了一个标准的卷积神经网络,完成该简单的卷积网络也就意味着我们完成了深度学习环境的配置。 从零开始:深度学习软件环境安
直接在下载好pythearn2包的目录下,对setup.py文件进行修改: 将 from theano.compat.six.moves import input 改为 from six.moves import input
该配置版本最后更新的日期是今年七月,该更新版本允许本地使用 3 个不同的 GPU 加速后端,并添加对 MKL BLAS 库的支持。
Theano是一个Python库,允许你定义、优化和有效地求值涉及多维数组的数学表达式。Theano的功能:
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Gavin__Zhou/article/details/49948141
PCL(Point cloud library) Ubuntu Linux 16 系统之所以会用Linux,很大的原因是应为SLAM在嵌入式平台上面的安置,所以尽量编写在inux下编写,同步arm编程环境的读者有兴趣可以去参考下搭建交叉编译环境 。 #OpenCV的安装 参考本菜的博客中,C++安装opencv的部分 Eigen C++线性代数计算库的安装 在slam的运行当中,会大量的使用到线性代数,为了省去手动写遍历去遍历代码,需要借助eigen去对opencv进行计算 关于Eigen的安
Keras是一个极简和高度模块化的神经网络库,Keras由纯Python编写而成并基于Theano或Tensorflow。Keras 为支持快速实验而生,如果你有如下需求,请选择Keras:
本文主要介绍了如何通过Python和Keras库实现图像数据增强。首先介绍了数据增强的原理和常用的数据增强方式,然后通过一个猫的例子展示了如何使用Keras库实现数据增强。最后介绍了如何使用Theano库实现数据增强。
也许已经听说过有关Theano的内容,但是究竟是什么呢?一种编程语言?编译器?Python库?好吧,实际上,这就是所有这些东西:Theano开发为以非常有效的方式编译,实现和评估数学表达式。实际上,它允许开发人员使用CPU和GPU来执行代码。现在,可能想知道使用GPU而不是CPU运行代码的优势是什么。
为了学习使用Faster R-CNN,需要安装OpenCV +Python环境,之前已经在CentOS下安装好了python2.7。yum安装的opencv是2.0版本,安装了opencv-python,但python中import cv2仍会报错,无法满足需要。所以决定用编译方式安装opencv。
1. 安装vs2015及以下版本 将c++有关选项选中安装完毕 CUDA需要C++的编译器,Windows下可以使用Visual C++,我们可以直接下载其官网推荐的Visual Studio。
sudo apt-get install Python-dev python-numpy
Please cite this paper(https://ejnmmires.springeropen.com/articles/10.1186/s13550-017-0260-9) if you found it useful. Thanks! Wang H, Zhou Z, Li Y, et al. Comparison of machine learning methods for classifying mediastinal lymph node metastasis of non-sma
原文链接https://indico.io/blog/python-deep-learning-frameworks-reviewed/ 麦迪逊月 - 2017年1月31日 ---- 我最近偶然发现了我在“神经网络的最佳python库”这个主题的一个旧的数据科学堆栈交换的答案,它让我深感python深度学习生态系统在过去的两年半内的快速发展。我在2014年七月推荐的一个库pylearn2,现在已经不再被积极地开发和维护,并且一大批深度学习的库已经占据它的位置。其实每一个库都有它的优势和弱点。我们已经使
实验室新装了keras,发现keras默认后端是tensorflow,想换回theano,看了官方文档也没搞懂,最终搞定,很简单。
CUDA / Compute Unified Device Architecture / CUDA Toolkit / 工具包
01 概念介绍 CUDA(Compute Unified Device Architecture 统一计算设备架构) CUDA(Compute Unified Device Architecture),是英伟达公司推出的一种基于新的并行编程模型和指令集架构的通用计算架构,它能利用英伟达GPU的并行计算引擎,比CPU更高效的解决许多复杂计算任务。 使用CUDA的好处就是透明。根据摩尔定律GPU的晶体管数量不断增多,硬件结构必然是不断的在发展变化,没有必要每次都为不同的硬件结构重新编码,而CUDA就是提供了一
让我们开始一个交互式会话(例如使用python或ipython)并导入Theano。
首先查了一下,cuda只支持Nvida显卡,所以只好放弃了。转而选择gpuarray backend,这个版本还没有release,都是开发版。
Theano是一个Python库,它允许你定义、优化和求值数学表达式,特别是具有多维数组(numpy.ndarray)的数学表达式。对于涉及大量数据的问题,使用Theano可以获得与手工编写的C实现不相上下的速度。它还可以通过利用最近的GPU超过CPU上的C多个数量级。
深度学习,在语音识别、图像识别、自然语言处理方面取得良好的效果,受到工业界的热捧。通往AI(人工智能)的道路是艰难的,深度学习取得的成绩,给AI的研究者带来了一点喜悦。真正实现跟人类一样的智能,还需要更多的突破,深度学习并不是AI的全部。但是,对于智能时代是一个福音,大量的数据积累,传统机器学习有他的不足之处。智能硬件的发展给深度学习插上了翅膀,GPU并行计算,加速了神经网络的计算速度。下面,整理一些业界比较经典的资料,帮助大家对深度学习有一个相对完整的认识。
领取专属 10元无门槛券
手把手带您无忧上云