Linux进程管理是系统管理中的一个重要部分,它可以帮助管理员了解和控制系统中运行的所有进程。本文将详细介绍Linux进程管理的相关知识,并提供示例来演示如何管理进程。
在Linux中,可以将进程分为前台进程和后台进程,它们的区别在于与终端的交互方式和执行状态。
在 Linux 系统中,进程是指正在运行的程序的实例。每个进程都有自己的内存空间、指令序列和数据结构。进程是 Linux 系统中最基本的管理单元,理解进程的概念和属性对于系统管理和应用开发非常重要。本文将详细介绍 Linux 进程的概念和属性,包括进程的定义、进程的状态、进程标识符、进程优先级等。
在多年前,linux还没有支持对称多处理器SMP的时候,避免并发数据访问相对简单。
进程是通过fork系列的系统调用(fork、clone、vfork)来创建的,内核(或内核模块)也可以通过kernel_thread函数创建内核进程。这些创建子进程的函数本质上都完成了相同的功能——将调用进程复制一份,得到子进程。(可以通过选项参数来决定各种资源是共享、还是私有。)
在Linux操作系统中,I/O(输入/输出)模型是一套定义如何处理数据读写的机制,它对系统性能有着重要影响。为了适应不同的应用场景和性能需求,Linux抽象出了多种I/O模型。每种模型都有其独特的特点、底层原理、优劣势以及适用场景。🤓
如果需要多个进程合作来完成某个任务,那个可能会存在资源争用或者其他一些意想不到的问题,这个时候,就需要通过实现进程同步来防止问题的产生。
前几期的分享,我们站在编码视角去聊 Java IO,旨在理解与编码,本次从 Linux 操作系统层面了解一下 IO 模型,这样方能做到知其然,知其所以然。
Linux互斥与同步 零、前言 一、Linux线程互斥 1、基本概念及引入 2、互斥量mutex介绍 3、互斥量的使用 4、互斥量原理 二、可重入/线程安全 1、基本概念 2、线程安全 3、重入函数 4、联系与区别 三、常见锁概念 四、Linux线程同步 1、基本概念 2、条件变量的使用 3、条件变量等待 4、条件变量使用规范 五、POSIX信号量 1、信号量概念及介绍 2、信号量的使用 零、前言 本章主要讲解学习Linux中对多线程的执行中的同步与互斥 一、Linux线程互斥 1、基本概念及引入 互
综述 在上一篇介绍了linux驱动的调试方法,这一篇介绍一下在驱动编程中会遇到的并发和竟态以及如何处理并发和竞争。 首先什么是并发与竟态呢?并发(concurrency)指的是多个执行单元同时、并行被执行。而并发的执行单元对共享资源(硬件资源和软件上的全局、静态变量)的访问则容易导致竞态(race conditions)。可能导致并发和竟态的情况有: SMP(Symmetric Multi-Processing),对称多处理结构。SMP是一种紧耦合、共享存储的系统模型,它的特点是多个CPU使用共同的系统总线
程序员:假如我们执行A,B两个IO操作的时候,如果必须等待A完成后才能执行B那么这个就是
在现代操作系统里,同一时间可能有多个内核执行流在执行,因此内核其实像多进程多线程编程一样也需要一些同步机制来同步各执行单元对共享数据的访问,尤其是在多处理器系统上,更需要一些同步机制来同步不同处理器上的执行单元对共享的数据的访问。在主流的Linux内核中包含了如下这些同步机制包括:
在处理进程间的同步与互斥问题时,我们离不开信号量和PV原语,使用这两个工具的目的在于打造一段不可分割不可中断的程序。应当注意的是,信号量和PV原语是解决进程间同步与互斥问题的一种机制,但并不是唯一的机制。
容器(Container):容器是一种轻量级、可移植、并将应用程序进行的打包的技术,使应用程序可以在几乎任何地方以相同的方式运行,Docker将镜像文件运行起来后,产生的对象就是容器。容器相当于是镜像运行起来的一个实例且容器具备一定的生命周期。
Linux/Unix五种I/O模型 内容来源,侵删。 游双-《Linux高性能服务器编程》 牛客网-Linux高并发服务器开发 ---- 阻塞-blocking 调用者调用了某个函数,然后等待这个函数返回,在这期间什么都不做,不停的去检查这个函数有没有返回,应用程序必须等这个函数返回才能进行下一步的动作。 即,针对阻塞I/O执行的系统调用可能因为无法立即完成而被操作系统挂起,直到等待的时间发生为止,才可以继续执行下一步的操作。 可能被阻塞的系统调用包括accept、send、rec
在这篇博客中,我们将探讨Linux底层的几种IO(输入/输出)方式,为鸿蒙开发者提供一个清晰的理解。本文将详细介绍阻塞IO、非阻塞IO、I/O多路复用、信号驱动IO及异步IO等概念,旨在帮助开发者优化鸿蒙应用性能。关键词:鸿蒙OS、Linux、IO模型、阻塞非阻塞、IO多路复用、性能优化。
因为现代操作系统是多处理器计算的架构,必然更容易遇到多个进程,多个线程访问共享数据的情况,如下图所示:
并发 是指在某一时间段内能够处理多个任务的能力,而 并行 是指同一时间能够处理多个任务的能力。并发和并行看起来很像,但实际上是有区别的,如下图(图片来源于网络):
Semaphore概述 信号量:它是不同进程或者一个给定进程内部不同线程间同步的机制 二值信号量:值为0或者1,与互斥锁类似,资源可用时,值为1,不可用时,值为0 计数信号灯:值在0到n之间。用来统计资源,其值代表可用资源数 等待操作:等待信号灯的值变为大于0,然后将其减1;而释放操作则相反,用来唤醒等待资源的进程或者线程 System V 信号灯(进程同步):是一个或者多个信号灯的一个集合。其中的每一个都是单独的计数信号灯。而Posix信号灯(线程同步)指的是单个计数信号灯 System V 信号灯由内核
而实际上,在Linux中,进程不止一个执行流,而是可能会有几个或很多个。同一个进程中,每一个执行流都指向同一个虚拟地址空间,由操作系统创建。即在完整的进程中,进程包括:若干个执行流,虚拟地址空间,页表,以及存在物理内存中属于该进程的数据和代码。
以上两个关键点最终都与操作系统的 I/O 模型以及线程(进程)模型相关,我们先详细看一下I/O模型 。
SIGTERM(信号 15)在基于 Unix 的操作系统(如 Linux)中用于终止进程。SIGTERM 信号提供了一种优雅的方式来终止程序,使其有机会准备关闭并执行清理任务,或者在某些情况下拒绝关闭。Unix/Linux 进程可以以多种方式处理 SIGTERM,包括阻塞和忽略。
在单线程的程序里,有两种基本的数据:全局变量和局部变量。但在多线程程序里,还有第三种数据类型:线程数据(TSD: Thread-Specific Data)。
1、Linux进程间的通信方式?两个进程是如何来共享内存的?两个进程如何通过信号量通信? Linux下进程间通信的方式有:管道(有名/无名) 、消息、信号、信号量、共享内存、邮箱、socket。 Linux下共享内存是进程间通信的方式之一,共享内存允许两个或多个进程访问同一块内存,比如像 malloc函数向不同的进程返回执行同一块物理内存区域的指针。当一个进程改变了这块地址中的内容的时候,其他拥有这块物理内存指针的进程也会察觉到这个更改。在进程间的通信方式中,共享内存是通信效率最高的,访问共享内存区域和访
---- Hello、Hello大家好,我是木荣,今天我们继续来聊一聊Linux中多线程编程中的重要知识点,详细谈谈多线程中同步和互斥机制。 同步和互斥 互斥:多线程中互斥是指多个线程访问同一资源时同时只允许一个线程对其进行访问,具有唯一性和排它性。但互斥无法限制访问者对资源的访问顺序,即访问是无序的; 同步:多线程同步是指在互斥的基础上(大多数情况),通过其它机制实现访问者对资源的有序访问。在大多数情况下,同步已经实现了互斥,特别是所有写入资源的情况必定是互斥的。少数情况是指可以允许多个访问者同时访问资源
进程与线程之间是有区别的,不过linux内核只提供了轻量进程的支持,未实现线程模型。Linux是一种“多进程单线程”的操作系统。Linux本身只有进程的概念,而其所谓的“线程”本质上在内核里仍然是进程。
各位好,今天是我们并发篇正式开始的第一篇,既然我们大家学习并发,那么就要理解一些计算机概念最好,否则,知道怎么用而不知道名称是啥,概念含糊不清,以及不知道怎么设计的,假如今天你突然换 go 语言,设计个并发还是不会。我们要学的是并发思想,在Java 中的思想,一通则百通,而不是背代码,切记切记。
对于任何Linux进程,它们的起点是创建它们的时刻。例如,父进程可以使用fork()系统调用启动子进程。一旦启动,进程将进入运行或可运行状态。在进程运行时,它可能会进入代码路径,要求它在继续之前等待特定的资源或信号。在等待资源的同时,这个过程将自愿放弃CPU周期,进入两种睡眠状态之一。
I/O是input/output的缩写,表示计算机与外接设备之间的数据传输。最常见的I/O类型有磁盘I/O、网络IO。IO和CPU比起来是非常低效的,为了保障应用程序的运行效率,Linux支持多种IO模型。
上一篇文章中,我们看到了如何通过 multiprocessing 来创建子进程。 通过 multiprocessing 实现 python 多进程
linux 中最常用的 IO 模型是同步 IO,在这个模型中,请求发出后应用程序会阻塞直到满足条件(阻塞 IO),或在不满足条件的情况下立即返回出错(非阻塞 IO),这样做的好处是程序在等待 IO 请求完成时不会占用 CPU。 POSIX 定义了异步 IO 应用程序接口(AIO API),linux 2.6 以上版本的内核也实现了内核级别的异步 IO 调用。 异步 IO 的基本思想是允许进程发起很多 IO 操作,而不用阻塞任何一个,也不用等待任何操作的完成,直到 IO 操作完成时,进程可以检索 IO 操作的结果。
面试指南系列,很多情况下不会去深挖细节,是小六六以被面试者的角色去回顾知识的一种方式,所以我默认大部分的东西,作为面试官的你,肯定是懂的。
由于Android系统是基于Linux系统的,所以有必要简单的介绍下Linux的跨进程通信,对大家后续了解Android的跨进程通信是有帮助的,本篇的主要内容如下:
并发相关的缺陷是最容易制造的,也是最难找到的,为了响应现代硬件和应用程序的需求,Linux 内核已经发展到同时处理更多事情的时代。这种变革使得内核性能及伸缩性得到了相当大的提高,然而也极大提高了内核编程的复杂性。
信号量(英语:semaphore)又称为信号标,是一个同步对象,用于保持在0至指定最大值之间的一个计数值。当线程完成一次对该semaphore对象的等待(wait)时,该计数值减一;当线程完成一次对semaphore对象的释放(release)时,计数值加一。当计数值为0,则线程等待该semaphore对象不再能成功直至该semaphore对象变成signaled状态。semaphore对象的计数值大于0,为signaled状态;计数值等于0,为nonsignaled状态.
容器(Container):容器是一种轻量级、可移植、并将应用程序进行的打包的技术,使应用程序可以在几乎任何地方以相同的方式运行 Docker将镜像文件运行起来后,产生的对象就是容器。容器相当于是镜像运行起来的一个实例。 容器具备一定的生命周期。 另外,可以借助docker ps命令查看运行的容器,如同在linux上利用ps命令查看运行着的进程那样。
在了解Nginx工作原理之前,我们先来了解下几个基本的概念 以及常见的I/O模型。
I/O输入/输出(Input/Output),在POSIX兼容的系统上,例如Linux系统,I/O操作可以有多种方式,比如DIO(Direct I/O),AIO(Asynchronous,I/O 异步I/O),Memory-Mapped I/O(内存映设I/O)等,不同的I/O方式有不同的实现方式和性能,在不同的应用中可以按情况选择不同的I/O方式。
关于同步理论的一些基本概念 临界区(critical area): 访问或操作共享数据的代码段 简单理解:synchronized大括号中部分(原子性) 竞争条件(race conditions)两个线程同时拥有临界区的执行权 数据不一致:(data unconsistency) 由竞争条件引起的数据破坏 同步(synchronization)避免race conditions 锁:完成同步的手段(门锁,门后是临界区,只允许一个线程存在) 上锁解锁必须具备原子性 原子性(象原子一样不可分割的操作) 有序
信号量的概念参见这里。 与消息队列和共享内存一样,信号量集也有自己的数据结构: struct semid_ds { struct ipc_perm sem_perm; /* Ownership a
操作系统中的经典定义: 进程:资源分配单位。 线程:调度单位。 操作系统中用PCB(Process Control Block, 进程控制块)来描述进程。Linux中的PCB是task_struct结构体。
linux内核中有多种内核锁,内核锁的作用是: 多核处理器下,会存在多个进程处于内核态的情况,而在内核态下,进程是可以访问所有内核数据的,因此要对共享数据进行保护,即互斥处理; linux内核锁机制有信号量、互斥锁、自旋锁还有原子操作。 一、信号量(struct semaphore): 是用来解决进程/线程之间的同步和互斥问题的一种通信机制,是用来保证两个或多个关键代码不被并发调用。 信号量(Saphore)由一个值和一个指针组成,指针指向等待该信号量的进程。信号量的值表示相应资源的使用情况。信号量S>=0
我们都知道unix世界里、一切皆文件、而文件是什么呢?文件就是一串二进制流而已、不管socket、还是FIFO、管道、终端、对我们来说、一切都是文件、一切都是流、在信息交换的过程中、我们都是对这些流进行数据的收发操作、简称为I/O操作(input and output)、往流中读出数据、系统调用read、写入数据、系统调用write、不过话说回来了、计算机里有这么多的流、我怎么知道要操作哪个流呢?做到这个的就是文件描述符、即通常所说的fd(file descriptor)、一个fd就是一个整数、所以对这个整数的操作、就是对这个文件(流)的操作、我们创建一个socket、通过系统调用会返回一个文件描述符、那么剩下对socket的操作就会转化为对这个描述符的操作、不能不说这又是一种分层和抽象的思想、
通过对线程与线程控制的相关知识点的编程学习和锻炼,培养学生们对线程相关实例问题的分析与解决能力。
首先Binder是Android中的一种独有的跨进程通信方式,简称IPC。它是专门为Android平台设计的。
进程是操作系统进行资源分配的基本单位,每个进程都有自己的独立内存空间。由于进程比较重量,占据独立的内存,所以上下文进程间的切换开销(栈、寄存器、虚拟内存、文件句柄等)比较大,但相对比较稳定安全。
我们知道,当可执行程序从磁盘等外设中加载到内存时,操作系统回味每一个进程创建一个task_struuct结构体,又称PCB,来保存有关该进程的所有属性。当该进程准备就绪,可以被CPU调用时,与此同时,可能会有多个进程同时处于准备就绪状态,这些进程所属状态就是运行状态(R状态),操作系统为了管理和有效这些处于运行状态的进程,就创建了一个运行队列,
多线程编程已经成为了现代软件开发的重要组成部分。对于Linux操作系统而言,多线程的支持和实现更是被广泛应用。本文将通过详细解析Linux操作系统中的多线程概念、线程的创建与管理、同步与互斥、线程间通信等方面,并结合示例代码,来深入探讨Linux的多线程编程。
前面两篇介绍按键的文章,无论是用GPIO来读取,还是用中断的方式,其应用程序通过循环读取的方式获取按键值,都会使得CPU的占用率很高。本篇先来介绍Linux中几种的I/O模型,以后使用这类方式进行按键值的读取,可以极大降低CPU的使用率。
领取专属 10元无门槛券
手把手带您无忧上云