不能拷贝互斥量变量,但可以拷贝指向互斥量的指针,这样就可以使多个函数或线程共享互斥量来实现同步。上面动态申请的互斥量需要动态的撤销。
之前一直在看POSIX的多线程编程,上个周末结合自己的理解,写了一个基于Qt的用条件变量同步线程的例子。故此来和大家一起分享,希望和大家一起交流。
在单线程的程序里,有两种基本的数据:全局变量和局部变量。但在多线程程序里,还有第三种数据类型:线程数据(TSD: Thread-Specific Data)。
进程与线程之间是有区别的,不过linux内核只提供了轻量进程的支持,未实现线程模型。Linux是一种“多进程单线程”的操作系统。Linux本身只有进程的概念,而其所谓的“线程”本质上在内核里仍然是进程。
同步是指协调多个执行线程或进程的执行,以确保它们按照一定的顺序执行或在特定的条件下等待。常见的同步机制包括信号量、条件变量和屏障等。
linux下的 pthread 是一个整形,而 id 是一个自定义类型, get_id 即打印线程id
在线程并发执行的时候,我们需要保证临界资源的安全访问,防止线程争抢资源,造成数据二义性。
锁是一个常见的同步概念,我们都听说过加锁(lock)或者解锁(unlock),当然学术一点的说法是获取(acquire)和释放(release)。
如果线程1,申请锁成功,进入临界区,正在访问临界资源。此时其它进程真正阻塞等待。那么问题来了,这时该线程是否可以被切换?答案是肯定的,可以被切换。 当持有锁的线程被切换走时,它是抱着锁一起被切走的。即使该线程被切换掉,其它线程此时也无法申请锁,只能等待该线程将锁释放掉。 因此,对于其它线程而言,有意义的锁的状态只有两种:1.锁被申请前、2.锁被释放后。 在其它线程眼中,当前线程持有锁的过程就是原子的(要么持有,要么不持有)。
线程 为什么使用线程? 使用fork创建进程以执行新的任务,该方式的代价很高——子进程将父进程的所有资源都复制一遍。 多个进程之间不会直接共享内存。 进程是系统分配资源的基本单位,线程是进程的基本执行
Linux互斥与同步 零、前言 一、Linux线程互斥 1、基本概念及引入 2、互斥量mutex介绍 3、互斥量的使用 4、互斥量原理 二、可重入/线程安全 1、基本概念 2、线程安全 3、重入函数 4、联系与区别 三、常见锁概念 四、Linux线程同步 1、基本概念 2、条件变量的使用 3、条件变量等待 4、条件变量使用规范 五、POSIX信号量 1、信号量概念及介绍 2、信号量的使用 零、前言 本章主要讲解学习Linux中对多线程的执行中的同步与互斥 一、Linux线程互斥 1、基本概念及引入 互
典型的UNIX系统都支持一个进程创建多个线程(thread)。在Linux进程基础中提到,Linux以进程为单位组织操作,Linux中的线程也都基于进程。尽管实现方式有异于其它的UNIX系统,但Linux的多线程在逻辑和使用上与真正的多线程并没有差别。 多线程 我们先来看一下什么是多线程。在Linux从程序到进程中,我们看到了一个程序在内存中的表示。这个程序的整个运行过程中,只有一个控制权的存在。当函数被调用的时候,该函数获得控制权,成为激活(active)函数,然后运行该函数中的指令。与此同时,其它的函数
信号量强调的是线程(或进程)间的同步:“信号量用在多线程多任务同步的,一个线程完成了某一个动作就通过信号量告诉别的线程,别的线程再进行某些动作(大家都在sem_wait的时候,就阻塞在那里)。当信号量为单值信号量时,也可以完成一个资源的互斥访问。信号量测重于访问者对资源的有序访问,在大多数情况下,同步已经实现了互斥,特别是所有写入资源的情况必定是互斥的。少数情况是指可以允许多个访问者同时访问资源。
---- Hello、Hello大家好,我是木荣,今天我们继续来聊一聊Linux中多线程编程中的重要知识点,详细谈谈多线程中同步和互斥机制。 同步和互斥 互斥:多线程中互斥是指多个线程访问同一资源时同时只允许一个线程对其进行访问,具有唯一性和排它性。但互斥无法限制访问者对资源的访问顺序,即访问是无序的; 同步:多线程同步是指在互斥的基础上(大多数情况),通过其它机制实现访问者对资源的有序访问。在大多数情况下,同步已经实现了互斥,特别是所有写入资源的情况必定是互斥的。少数情况是指可以允许多个访问者同时访问资源
线程(thread)技术早在60年代就被提出,但真正应用多线程到操作系统中去,是在80年代中期,solaris是这方面的佼佼者。传统的Unix也支持线程的概念,但是在一个进程(process)中只允许有一个线程,这样多线程就意味着多进程。现在,多线程技术已经被许多操作系统所支持,包括Windows/NT,当然,也包括Linux。 为什么有了进程的概念后,还要再引入线程呢?使用多线程到底有哪些好处?什么的系统应该选用多线程?我们首先必须回答这些问题。 使用多线程的理由之一是和进程相比,它是一种非常”节俭”的多任务操作方式。我们知道,在Linux系统下,启动一个新的进程必须分配给它独立的地址空间,建立众多的数据表来维护它的代码段、堆栈段和数据段,这是一种”昂贵”的多任务工作方式。而运行于一个进程中的多个线程,它们彼此之间使用相同的地址空间,共享大部分数据,启动一个线程所花费的空间远远小于启动一个进程所花费的空间,而且,线程间彼此切换所需的时间也远远小于进程间切换所需要的时间。据统计,总的说来,一个进程的开销大约是一个线程开销的30倍左右,当然,在具体的系统上,这个数据可能会有较大的区别。 使用多线程的理由之二是线程间方便的通信机制。对不同进程来说,它们具有独立的数据空间,要进行数据的传递只能通过通信的方式进行,这种方式不仅费时,而且很不方便。线程则不然,由于同一进程下的线程之间共享数据空间,所以一个线程的数据可以直接为其它线程所用,这不仅快捷,而且方便。当然,数据的共享也带来其他一些问题,有的变量不能同时被两个线程所修改,有的子程序中声明为static的数据更有可能给多线程程序带来灾难性的打击,这些正是编写多线程程序时最需要注意的地方。 除了以上所说的优点外,不和进程比较,多线程程序作为一种多任务、并发的工作方式,当然有以下的优点: 1) 提高应用程序响应。这对图形界面的程序尤其有意义,当一个操作耗时很长时,整个系统都会等待这个操作,此时程序不会响应键盘、鼠标、菜单的操作,而使用多线程技术,将耗时长的操作(time consuming)置于一个新的线程,可以避免这种尴尬的情况。 2) 使多CPU系统更加有效。操作系统会保证当线程数不大于CPU数目时,不同的线程运行于不同的CPU上。 3) 改善程序结构。一个既长又复杂的进程可以考虑分为多个线程,成为几个独立或半独立的运行部分,这样的程序会利于理解和修改。 下面我们先来尝试编写一个简单的多线程程序。
说明:本篇博客整理自文末的多篇参考博客(每篇博客各有侧重)。本文结合源码对Unsafe的park和unpark方法进行了完整全面的梳理,并对部分参考博客中存在的错误描述进行说明。
项目中遇到一个bug,因为接入了几家越狱平台:91、同步推、PP助手,在设备上安装了三个应用,启用其中任意一个,另外二个启动后无法创建发送socket消息,从而导致游戏直接死在登录那里,再次点击登录时线程才会被唤醒(无法发送的原因定位到,是因为在调用sem_post方法后无法将线程唤醒)。之后我尝试将信号量改为条件变量,就再也没有遇到那个问题了。具体改写的几个方法:
[Linux](https://www.2cto.com/os/linux/)下使用 Pthread库中的 pthread_cond_*() 函数提供了与条件变量相关的功能。
park是Unsafe类里的native方法,LockSupport类通过调用Unsafe类的park和unpark提供了几个操作。Unsafe的park方法如下:
入门 包含了正确的头文件只能编译通过,没链接正确的库链接会报错。 一些常用的库gcc会自动链接。 库的缺省路径/lib /usr/lib /usr/local/lib 不知道某个函数在那个库可以nm -o /lib *.so | grep 函数名 man sin 会列出包含的头文件和链接的库名。 man 2 sin 2表示系统调用,3表示c库函数 一旦子进程被创建,父子进程一起从fork处被创建。 创建子进程为了争夺资源。 重定向用dup2函数 kill -l查看信号种类 pthread_mutex不跨进
什么叫互斥量,顾名思义就是咱这么多人,只能有一个使用这个资源,就像共享小单车,一次只能给一个人用,一个人下车锁车了,另一个人才能去扫码开锁。
线程?为什么有了进程还需要线程呢,他们有什么区别?使用线程有什么优势呢?还有多线程编程的一些细节问题,如线程之间怎样同步、互斥,这些东西将在本文中介绍。我见到这样一道面试题: 是否熟悉POSIX
多线程编程已经成为了现代软件开发的重要组成部分。对于Linux操作系统而言,多线程的支持和实现更是被广泛应用。本文将通过详细解析Linux操作系统中的多线程概念、线程的创建与管理、同步与互斥、线程间通信等方面,并结合示例代码,来深入探讨Linux的多线程编程。
初学者在使用 多线程 并发执行任务时一定会遇到 并发访问的问题,最直观的感受就是每次运行得出的结果值大概率不一致,这种执行结果不一致的现象是非常致命,因为它具有随机性,即结果可能是对的,也可能是错的,无法可靠的完成任务,类似物理学神兽 薛定谔的猫
load :将共享变量ticket从内存加载到寄存器中 update : 更新寄存器里面的值,执行-1操作 store :将新值,从寄存器写回共享变量ticket的内存地址
今天是最后一篇关于Linux线程编程的文章分享,在这里我们先掌握基础的概念及其应用,后面在慢慢去深入学习。最近看到一句说的非常在理:理论’是你知道是这样,但它却不好用。‘实践’是它很好用,但你不知道是为什么。我想大多数学习者,和我一样,在学习的过程中,都会或多或少的有这种情况,不过自己坚信,你把基础打好(同时学的过程中,不要好高骛远,三心二意的,把自己先暂时用到的东西学明白,再去学其他东西,不要当前的,没学会,又跑去学其他的,而且又学不会,这样浪费时间和精力;这个这里基础打好,举个例子,你的c语言功底要打好,对指针的使用非常熟悉,甚至一些高级用法就是要平时慢慢积累和总结,以及内存原理要知道为什么是这样等方面),后面实战的话,就好多了,至少不会说我这个东西不会那个东西又不会,这样会让自己很痛苦当初为啥没学好基础,现在实战中漏洞百出。好了,废话不多说了,开始下面的主题分享:
1 条件变量 条件变量是一种同步机制,允许线程挂起,直到共享数据上的某些条件得到满足。 1.1 相关函数 #include <pthread.h> pthread_cond_t cond = PTHREAD_COND_INITIALIZER; int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t*cond_attr); int pthread_cond_signal(pthread_cond_t *cond); int
进程在多数早期多任务操作系统中是执行工作的基本单元。进程是包含程序指令和相关资源的集合,每个进程和其他进程一起参与调度,竞争 CPU 、内存等系统资源。每次进程切换,都存在进程资源的保存和恢复动作,这称为上下文切换。进程的引入可以解决多用户支持的问题,但是多进程系统也在如下方面产生了新的问题:进程频繁切换引起的额外开销可能会严重影响系统性能。
例如,用户运行自己的程序,系统就创建一个进程,并为它分配资源,包括各种表格、内存空间、磁盘空间、I/O设备等。
在多处理器共享内存的架构中(如:对称多处理系统SMP),线程可以用于实现程序的并行性。历史上硬件销售商实现了各种私有版本的多线程库,使得软件开发者不得不关心它的移植性。对于UNIX系统,IEEE POSIX 1003.1标准定义了一个C语言多线程编程接口。依附于该标准的实现被称为POSIX theads 或 Pthreads。
很多时候,我们做项目并不会创建那么多进程,而是创建一个进程,在该进程中创建多个线程进行工作。
实际上就是解释ucore的哲学家就餐怎么实现的,内核级别的信号量怎么实现的,之后给出自己关于用户级别的信号量的设计方案,比较两者异同。
lab7 会依赖 lab1~lab6 ,我们需要把做的 lab1~lab6 的代码填到 lab7 中缺失的位置上面。练习 0 就是一个工具的利用。这里我使用的是 Linux 下的系统已预装好的 Meld Diff Viewer 工具。和 lab6 操作流程一样,我们只需要将已经完成的 lab1~lab6 与待完成的 lab7 (由于 lab7 是基于 lab1~lab6 基础上完成的,所以这里只需要导入 lab6 )分别导入进来,然后点击 compare 就行了。
这个线程池是在学习完《Linux/UNIX系统编程手册》中线程相关知识后用来练手的小项目,线程相关函数都是直接调用Linux的API,并且使用了C++中的queue和vector。 虽然C++中也提供了线程创建、互斥锁等函数库,但是也是对系统函数的封装。并且作为初学,先学会用原生函数比较好。
POSIX 全称是 Portable Operating System Interface of UNIX ,表示可移植操作系统接口,本质上是一种编程标准。它定义了操作系统应该为应用程序提供的接口标准,是 IEEE 为要在各种 UNIX 操作系统上运行的软件而定义的一系列 API 标准的总称。
pthread_create创建一个线程,产生一个线程ID存放在第一个参数之中,该线程ID与内核中的LWP并不是一回事。pthread_create函数第一个参数指向一块虚拟内存单元,该内存单元的地址就是新创建线程ID,这个ID是线程库的范畴,而内核中LWP是进程调度的范畴,轻量级进程是OS调度的最小单位,需要一个数值来表示该唯一线程。
go语言类似Java JUC包也提供了一些列用于多线程之间进行同步的措施,比如低级的同步措施有 锁、CAS、原子变量操作类。相比Java来说go提供了独特的基于通道的同步措施。本节我们先来看看go中与锁相关的条件变量
什么是多线程,提出这个问题的时候,我还是很老实的拿出操作系统的书,按着上面的话敲下“为了减少进程切换和创建开销,提高执行效率和节省资源,我们引入了线程的概念,与进程相比较,线程是CPU调度的一个基本单位。”
线程?为什么有了进程还需要线程呢,他们有什么区别?使用线程有什么优势呢?还有多线程编程的一些细节问题,如线程之间怎样同步、互斥,这些东西将在本文中介绍。我见到这样一道面试题: 是否熟悉POSI
同步问题是保证数据安全的情况下,让线程访问资源具有一定的顺序性,从而有效避免饥饿问题,叫做同步。
想必大家开发过程中都会用到多线程,用到多线程基本上都会用到条件变量,你理解的条件变量只是简单的wait和notify吗,最近工作中看同事也都只是简单的使用wait和notify,导致项目出现bug却不知如何fix bug,其实这里面还是有一些坑的,程序喵这里总结给大家。
也是最近看YOLOV3的源码的时候接触到这里,demo()函数里是用到多线程编程的。我一开始是把线程这里是略掉的,后来发现实际上检测的函数就是通过线程来组织的,所以不得不看这里的知识,大部分的参考这篇文章,用自己的语言理解一遍写下来。
好,了解之后切入正题,条件变量和信号量是各有千秋的,虽然大方向上都是为了实现线程同步,但是实现过程是有一定差异的。
条件变量是一种高级的线程同步机制,它允许线程在某个条件发生变化之前等待,直到条件变为真才被唤醒。在 Python 中,可以使用 threading.Condition 类来创建一个条件变量。条件变量有三个操作:wait()、notify() 和 notify_all()。wait() 方法用于等待条件变量,notify() 方法用于通知等待的线程条件变量已经发生变化,notify_all() 方法用于通知所有等待的线程条件变量已经发生变化。
原文发布于微信公众号 - 云服务与SRE架构师社区(ai-cloud-ops),作者李勇。
现代操作系统基本都是多任务操作系统,即同时有大量可调度实体在运行。在多任务操作系统中,同时运行的多个任务可能:
领取专属 10元无门槛券
手把手带您无忧上云