在多线程环境中,多个线程可能会同时访问同一个资源,为了避免访问发生冲突,可以根据访问的复杂程度采取不同的措施
很多时候,我们做项目并不会创建那么多进程,而是创建一个进程,在该进程中创建多个线程进行工作。
锁是一个常见的同步概念,我们都听说过加锁(lock)或者解锁(unlock),当然学术一点的说法是获取(acquire)和释放(release)。
上一篇介绍了乐观锁和悲观锁,它们的分类依据是线程间是否需要锁住资源,需要锁住就是悲观锁,不需要锁住就是乐观锁。
---- Hello、Hello大家好,我是木荣,今天我们继续来聊一聊Linux中多线程编程中的重要知识点,详细谈谈多线程中同步和互斥机制。 同步和互斥 互斥:多线程中互斥是指多个线程访问同一资源时同时只允许一个线程对其进行访问,具有唯一性和排它性。但互斥无法限制访问者对资源的访问顺序,即访问是无序的; 同步:多线程同步是指在互斥的基础上(大多数情况),通过其它机制实现访问者对资源的有序访问。在大多数情况下,同步已经实现了互斥,特别是所有写入资源的情况必定是互斥的。少数情况是指可以允许多个访问者同时访问资源
所有线程间共享数据的问题,都是修改数据导致的(竞争条件) 。如果所有的共享数据都是只读的,就没问题,因为一个线程所读取的数据不受另一个线程是否正在读取相同的数据而影响
距离失业已经过去两个月了,这是小帅接到的第四次面试邀请。“回去等通知吧...”,简简单单的六个字,把小帅的心再次打入了冰窖。
测试中效率最高的锁, 不过经YYKit作者确认, OSSpinLock已经不再线程安全,OSSpinLock有潜在的优先级反转问题
何为同步?JVM规范规定JVM基于进入和退出Monitor对象来实现方法同步和代码块同步,但两者的实现细节不一样。代码块同步是使用monitorenter和monitorexit指令实现,而方法同步是使用另外一种方式实现的,细节在JVM规范里并没有详细说明,但是方法的同步同样可以使用这两个指令来实现。monitorenter指令是在编译后插入到同步代码块的开始位置,而monitorexit是插入到方法结束处和异常处, JVM要保证每个monitorenter必须有对应的monitorexit与之配对。任何对
对多种进程间通信方式的介绍在这篇总结过了:进程间通信,不过没有提互斥,因为我一直是把互斥和通信分开的。
结合多线程锁的策略, 我们就可以总结出, Synchronized 具有以下特性(只考虑 JDK 1.8):
在多线程的软件世界里,对共享资源的争抢过程(Data Race)就是并发,而对共享资源数据进行访问保护的最直接办法就是引入锁!。
1 互斥锁 在线程实际运行过程中,我们经常需要多个线程保持同步。 这时可以用互斥锁来完成任务。互斥锁的使用过程中,主要有 pthread_mutex_init pthread_mutex_destory pthread_mutex_lock pthread_mutex_unlock 这几个函数以完成锁的初始化,锁的销毁,上锁和释放锁操作。 1.1 锁的创建 锁可以被动态或静态创建,可以用宏PTHREAD_MUTEX_INITIALIZER来静态的初始化锁,采用这种方式比较容易理解,互斥锁是pthread_m
翻看目前关于 iOS 开发锁的文章,大部分都起源于 ibireme 的 《不再安全的 OSSpinLock》,我在看文章的时候有一些疑惑。这次主要想解决这些疑问:
JAVA中操作共享数据按照线程安全程度大致分为5类: 不可变,绝对线程安全,相对线程安全,线程兼容和线程对立
这三种锁指的是synchronized锁的状态,Java1.6之前是基于重量级锁,Java1.6之后对synchronized进行了优化,为了减少获取和释放锁带来的性能消耗,引入了偏向锁、轻量级锁以及锁的升级机制。锁升级的路径:无锁→偏向锁→轻量级锁→重量级锁。
对象头的最后两位存储了锁的标志位,01是初始状态,没加锁状态,对象头里存储的是对象本身的哈希码。01是偏向锁状态,存储的是当前占用对象的线程ID。00是轻量级锁状态,存储指向线程栈中锁记录的指针。10是重量级锁状态,存储的技术就是重量级锁的指针了。
公平锁(Fair) 加锁前检查是否有排队等待的线程,优先排队等待的线程,先到先得。
自旋锁主要用来解决SMP和调度引发的竞态问题,但是普通的自旋锁并不关心临界区在执行什么操作,对读和写都一视同仁,这样就会存在一些弊端!
大家在使用多线程的时候,是否有关注过线程安全的问题。如果咱的代码在使用多线程时,在相同的时间有多个线程同时执行相同的方法,此时也许就存在数据安全的问题,如多个线程之间对相同的内存进行同时的读取和修改。而让方法在多线程调用中,相同的时间会被多个线程同时执行某段代码逻辑的技术称为方法重入调用技术,而禁止方法被同时调用也就是禁止方法重入调用。在 dotnet 里面有多个方式可以做到禁止方法重入调用,本文将告诉大家如何做到禁止方法重入调用
POSIX threads(简称Pthreads)是在多核平台上进行并行编程的一套常用的API。线程同步(Thread Synchronization)是并行编程中非常重要的通讯手段,其中最典型的应用就是用Pthreads提供的锁机制(lock)来对多个线程之间共 享的临界区(Critical Section)进行保护(另一种常用的同步机制是barrier)。
每个Java对象都隐含一把锁,Java内置锁的很多重要信息都放在对象头部,对象头有三个字段:
JVM规范规定JVM基于进入和退出Monitor对象来实现方法同步和代码块同步,但两者的实现细节不一样。代码块同步是使用monitorenter和monitorexit指令实现,而方法同步是使用另外一种方式实现的,细节在JVM规范里并没有详细说明,但是方法的同步同样可以使用这两个指令来实现。monitorenter指令是在编译后插入到同步代码块的开始位置,而monitorexit是插入到方法结束处和异常处, JVM要保证每个monitorenter必须有对应的monitorexit与之配对。任何对象都有一个 monitor 与之关联,当且一个monitor 被持有后,它将处于锁定状态。线程执行到 monitorenter 指令时,将会尝试获取对象所对应的 monitor 的所有权,即尝试获得对象的锁。
在早期的 Linux内核中,并发的来源相对较少。早期内核不支持对称多处理( symmetric multi processing,SMP),因此,导致并发执行的唯一原因是对硬件中断的服务。这种情况处理起来较为简单,但并不适用于为获得更好的性能而使用更多处理器且强调快速响应事件的系统。
自旋锁是专为防止多处理器并发(实现保护共享资源)而引入的一种锁机制。自旋锁与互斥锁比较类似,它们都是为了解决对某项资源的互斥使用。无论是互斥锁,还是自旋锁,在任何时刻,最多只能有一个保持者,也就说,在任何时刻最多只能有一个执行单元获得锁。但是两者在调度机制上略有不同。对于互斥锁,如果资源已经被占用,资源申请者只能进入睡眠状态。但是自旋锁不会引起调用者睡眠,如果自旋锁已经被别的执行单元保持,调用者就一直循环在那里看是否该自旋锁的保持者已经释放了锁,“自旋”一词就是因此而得名。自旋锁在内核中大量应用于中断处理等部分(对于单处理器来说,防止中断处理中的并发可简单采用关闭中断的方式,即在标志寄存器中关闭/打开中断标志位,不需要自旋锁)。
在MySQL种,执行show engine innodb status \G 经常会看到里面有spin lock 及mutex的情况。我们有必要了解下这些知识。
自旋锁(Spinlock)是一种广泛运用的底层同步机制。自旋锁是一个互斥设备,它只有两个值:“锁定”和“解锁”。它通常实现为某个整数值中的某个位。希望获得某个特定锁得代码测试相关的位。如果锁可用,则“锁定”被设置,而代码继续进入临界区;相反,如果锁被其他人获得,则代码进入忙循环(而不是休眠,这也是自旋锁和一般锁的区别)并重复检查这个锁,直到该锁可用为止,这就是自旋的过程。“测试并设置位”的操作必须是原子的,这样,即使多个线程在给定时间自旋,也只有一个线程可获得该锁。
众所周知,硬实时的概念,其核心并非追求速度的极致,而是确保系统能在预定的、可重复的时间范围内给予确定的响应。这意味着,实时系统的正确性不仅在于计算逻辑的正确,更在于结果的产生时间是否符合预期。以汽车为例,当发生碰撞时,安全气囊必须在极短的时间内弹开,否则可能无法起到应有的保护作用。
一切互斥操作的依赖是 自旋锁(spin_lock),互斥量(semaphore)等其他需要队列的实现均需要自选锁保证临界区互斥访问。
线程同步可以说在日常开发中是用的很多, 但对于其内部如何实现的,一般人可能知道的并不多。 本篇文章将从如何实现简单的锁开始,介绍linux中的锁实现futex的优点及原理,最后分析java中同步机制如wait/notify, synchronized, ReentrantLock。
并发相关的缺陷是最容易制造的,也是最难找到的,为了响应现代硬件和应用程序的需求,Linux 内核已经发展到同时处理更多事情的时代。这种变革使得内核性能及伸缩性得到了相当大的提高,然而也极大提高了内核编程的复杂性。
这个算法是由分布式系统大佬lamport提出的,用来解决多线程抢占资源的锁控制问题。在之前介绍数据库事务原则的时候,曾经介绍过隔离性。不仅在数据库当中,在并发系统当中,只要出现多个线程抢占一个资源的情况,就必然需要引入锁来实现隔离。保证一次只能有一个线程占有资源,防止线程之间的读写操作混乱,导致数据错误。今天讲的面包店算法,就是针对这个场景,实现线程之间隔离的。
linux内核中有多种内核锁,内核锁的作用是: 多核处理器下,会存在多个进程处于内核态的情况,而在内核态下,进程是可以访问所有内核数据的,因此要对共享数据进行保护,即互斥处理; linux内核锁机制有信号量、互斥锁、自旋锁还有原子操作。 一、信号量(struct semaphore): 是用来解决进程/线程之间的同步和互斥问题的一种通信机制,是用来保证两个或多个关键代码不被并发调用。 信号量(Saphore)由一个值和一个指针组成,指针指向等待该信号量的进程。信号量的值表示相应资源的使用情况。信号量S>=0
Java 中的锁有很多,可以按照不同的功能、种类进行分类,下面是我对 Java 中一些常用锁的分类,包括一些基本的概述
开始了解一下Java高并发的东东,这个东西因为Liusy所在的厂也不是互联网大厂,平时工作上的内容也就是进行CRUD业务处理,并不涉及高并发的业务。但是为了知识库的构建,还是了解一下。万一以后有机会进入互联网大厂呢?(作为一个技术人,总是有想进去互联网一线大厂镀镀金的梦想的)
在Java中允许线程访问共享变量,为了确保共享变量能被准确和一致的更新,线程应该确保使用排它锁来单独获得这个变量,Java中提供了 volatile,使之在多处理器开发中保证变量的可见性,当一个线程改变了共享变量,另一个线程能够及时读到这个修改的值。恰当的使用它会比 synchronized 成本更低,因为不会引起上下文的切换和调度。
PS:有数据表明,除去大型互联网公司,80%的系统不存在多线程的竞争的情况,一定要熟悉这几种锁,对以后面试镀金(面试)真的很有用。
乐观锁是一种乐观思想,即认为读多写少,遇到并发写的可能性低,每次去拿数据的时候都认为 别人不会修改,所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数 据,采取在写时先读出当前版本号,然后加锁操作(比较跟上一次的版本号,如果一样则更新), 如果失败则要重复读-比较-写的操作。 java 中的乐观锁基本都是通过 CAS 操作实现的,CAS 是一种更新的原子操作,比较当前值跟传入 值是否一样,一样则更新,否则失败。
分享一个我自己总结的Java学习的系统知识点以及面试问题,目前已经开源,会一直完善下去,欢迎建议和指导欢迎Star: https://github.com/Snailclimb/Java-Guide
在读很多并发文章中,会提及各种各样锁如公平锁,乐观锁等等,这篇文章介绍各种锁的分类。介绍的内容如下:
重入锁实现可重入性原理或机制是:每一个锁关联一个线程持有者和计数器,当计数器为 0 时表示该锁没有被任何线程持有,那么任何线程都可能获得该锁而调用相应的方法;当某一线程请求成功后,JVM会记下锁的持有线程,并且将计数器置为 1;此时其它线程请求该锁,则必须等待;而该持有锁的线程如果再次请求这个锁,就可以再次拿到这个锁,同时计数器会递增;当线程退出同步代码块时,计数器会递减,如果计数器为 0,则释放该锁。
领取专属 10元无门槛券
手把手带您无忧上云