看了上面的基本过程后,相信大家可以理解了,如果我们要操作磁盘读写的话,就是告诉磁盘控制器关于柱面、磁头、扇区、缓 存位置,然后是读还是写,剩下的由磁盘控制器完成。
为何更改为 4096 字节扇区? 如果您熟悉磁盘结构,就知道磁盘是被分解成扇区 的,大小通常是 512 字节;所有读写操作均在成倍大小的扇区中进行。仔细查看,就会发现硬盘事实上在扇区之间包括大量额外数据,这些额外字节由磁盘固件使用,以检测和纠正每个扇区内的错误。随着硬盘变得越来越大,越来越多的数据需要存储在磁盘的每一单位面积上,导致更多低级别错误,从而增加了固件纠错功能的负担。 解决该问题的一个方法是将扇区大小从 512 字节增加为更大的值,以使用功能更强大的纠错算法。这些算法可使每个字节使用较少的数据,从
不同版本的操作系统的 buffer_head 代表的大小可能不一样,但是都是内存和硬盘交换数据的基本单元。
硬盘的种类主要是SCSI 、IDE 、以及现在流行的SATA等;任何一种硬盘的生产都要一定的标准;随着相应的标准的升级,硬盘生产技术也在升级;比如 SCSI标准已经经历了SCSI-1 、SCSI-2、SCSI-3;其中目前咱们经常在服务器网站看到的 Ultral-160就是基于SCSI-3标准的;IDE 遵循的是ATA标准,而目前流行的SATA,是ATA标准的升级版本;IDE是并口设备,而SATA是串口,SATA的发展目的是替换IDE;
注意:inode号是磁盘格式化的时候就自动按一定的比例4k:1分配好了,当创建一个文件是就会拿一个inode给这个文件使用。inode里面存的是文件的相关属性比如大小,权限,属组和存在磁盘的位置,如果创建文件提示空间不够,但是df查看磁盘空间的时候,发现还有空间,但是就是创建不了,这个时候就应该是inode被占满了,可以通过删除文件来回收inode
先讲一个作者大约5-6年前我在某当时很火的一个应用分发创业公司的面试小插曲,该公司安排了一个刚工作1年多的一个同学来面我,聊到我们项目中的配置文件里写的一个开关,这位同学就跳出来说,你这个读文件啦,每个用户请求来了还得多一次的磁盘IO,性能肯定差。借由这个故事其实我发现了一个问题,虽然我们中的大部分人都是计算机科班出身,代码也写的很遛。但是在一些看似司空见惯的问题上,我们中的绝大多数人并没有真正理解,或者理解的不够透彻。
https://www.cnblogs.com/huxiao-tee/p/4657851.html
但是这些都是文件被进程打开后才有的操作,那么其余文件呢???在我们的系统中有非常多的文件(一切皆文件),被打开的文件只是一小部分。没有被打开的文件实际上是在磁盘上储存的,也就是磁盘文件。 在打开文件之前,我们需要找到文件 -> 就要从磁盘中找到对应文件 -> 通过文件路径与文件名。
机械磁盘由磁头(head)、磁道(track)、柱面(cylinder)、扇区(sector)和盘片(platter)组成。其中,磁头悬浮在盘片上,并且每张盘片上下各有一个磁头;每张盘片的磁道数是相同的,每张盘片相同位置的磁道组成柱面;而每一个磁道由数量相同的扇区组成,我们知道离主轴越远的扇区面积越大,而扇区大小一般为512B,必然导致存储密度越低,这样做明显浪费空间,为了解决问题,我们将磁盘密度改为等密度结构,这就意味着外围磁道的扇区数量要大于内圈的数量。
在日常开发中一些看似司空见惯的问题上,我觉得可能大多数人其实并没有真正理解,或者理解的不够透彻。不信我们来看以下一段简单的读取文件的代码:
磁盘的组成:主要由盘片、机械手臂、磁头、与主轴马达所组成。而数据的写入其实是在盘片上面。盘片上面又可细分出扇区(Sector)与柱面(Cylinder)两种单位,其中扇区每个为512bytes那么大。假设磁盘只有一个盘片,那么盘片如图所示:
我在互联网上经常看到这样的说法:RAID很危险,RAID磁盘阵列在重建过程中失败的可能性几乎是100%,因为硬盘驱动器已经变得非常大。
软件运行时输入单元输入内容,进入内存,CPU由控制单元和算术逻辑单元组成,控制单元控制算术逻辑单元从内存中读取数据,内存和外部存储设备进行交互,运算完毕以后输出到输出单元,完成软件的运行。
我相信只要使用过电脑的人都对磁盘这个词不陌生,我们通常在买电脑的时候也会根据磁盘的大小做选择,磁盘作为计算机的存储设备也是很重要的一个部件。
刚看了一下,上一次我分享完内存篇的时候是2019年12月25号。没想到在我酝酿和打磨磁盘篇的这段时间里,我们的生活发生了如此大的变化。人类一直觉得自己是地球上所有生物的主宰,没想到这次被一个小小的病毒狠狠地咬了一口,而且还在欧美继续猖狂。也许是人类安逸太久了,早已经没有原始社会那种需要战战兢兢过日子的心态,在病毒初见端倪的时候,并没有得到足够的重视。甚至中国已经和病毒进行着全国大战役的时候,欧美的同学们还在开开心心的闲逛,聚会。本来他们有足够多的时间和机会的,结果却演变到了今天这个局面。我想说的一句是,人类在宇宙中能够存在,本来就已经是一个极低概率的事件了,宇宙中的各种射线,上千度万度的高温,都是脆弱的人类生命的不可承受之重。人类现在已经把宇宙观测到放大到星系团了暂时也没发现其它文明存在。不管自己多牛逼,始终还是要保存一颗敬畏自然、敬畏其它物种的心,且行且珍惜。
磁盘是一种存储数据的存储器,早期主要计算机使用的磁盘是软磁盘(软盘),而如今则主要使用硬磁盘(硬盘)。而如今市面上的硬盘主要有机械硬盘以及固态硬盘。两者各有优缺点。
翻译成中文大致意思:文件系统主要是管理数据存储以及数据如何检索的,而数据存储在磁盘或内存中。上期我们聊过了漫谈虚拟内存,本期我们就重点介绍磁盘中的机械磁盘的组成以及工作原理,然后引申到文件系统。
理解inode,要从文件储存说起。文件储存在硬盘上,硬盘的最小存储单位叫做”扇区”(Sector)。每个扇区储存512字节(相当于0.5KB)。操作系统读取硬盘的时候,不会一个个扇区地读取,这样效率太低,而是一次性连续读取多个扇区,即一次性读取一个”块”(block)。这种由多个扇区组成的”块”,是文件存取的最小单位。”块”的大小,最常见的是4KB,即连续八个 sector组成一个 block。文件数据都储存在”块”中,那么很显然,我们还必须找到一个地方储存文件的元信息,比如文件的创建者、文件的创建日期、文件的大小等等。这种储存文件元信息的区域就叫做inode,中文译名为”索引节点” 。
硬盘的物理结构是比较复杂的,这里我们只需要知道最常用到的几个术语即可,也就是chs寻址中所涉及到的结构
系统引导环节是操作系统启动过程中的最重要环节,也是最容易出问题的环节之一。按照个人计算机的硬件标准,引导环节发生在计算机的硬件系统检测完毕之后。具体的引导工作,是由BIOS完成的。BIOS维持一个可用于引导计算机的硬件设备列表,比如本地硬盘、本地光驱、网络、USB接口设备等,然后做一个排序。BIOS会试图从整个序列的第一个设备开始,检查其状态和引导能力。比如针对光驱,则首先会判断光驱中是否存在光盘,如果不存在,则跳过光驱设备,进入下一个设备的检测过程。如果发现有光盘存在,则试图读取光盘的第一个扇区,并检查这是否是一个可引导扇区(比如通过检查扇区的最后两个字节是不是0x55AA)。如果发现不是一个可引导扇区,则也是跳过光盘,再检查引导序列中的下一个设备,直到发现一个可引导的扇区为止。如果遍历完整个引导设备列表,未找到任何可引导的扇区代码,则引导过程失败,BIOS会提示无法找到可启动设备。如果在这个过程中能够找到一个可引导扇区,则BIOS会把该扇区的内容加载到内存,并跳转到该扇区,执行引导代码。这个跳转指令,就是BIOS程序在计算机启动过程中的最后一条指令,至此,BIOS的工作结束。后续工作,将由引导扇区代码完成。
想自己组建一个nas,但是看到一直有人说pmr垂直式硬盘与smr叠瓦式硬盘,还有人一直鄙视叠瓦式硬盘,我就好奇了,有什么区别吗?
首先简单认识一下硬盘的物理结构,总体来说,硬盘结构包括:盘片、磁头、盘片主轴、控制电机、磁头控制器、数据转换器、接口、缓存等几个部分。所有的盘片(一般硬盘里有多个盘片,盘片之间平行)都固定在一个主轴上。在每个盘片的存储面上都有一个磁头,磁头与盘片之间的距离很小(所以剧烈震动容易损坏),磁头连在一个磁头控制器上,统一控制各个磁头的运动。磁头沿盘片的半径方向动作,而盘片则按照指定方向高速旋转,这样磁头就可以到达盘片上的任意位置了。
前些天群友@Seraph_JACK在整引导,于是我也跟着云了一下。结果发现,我对引导相关的了解着实拉跨。所以趁此机会,正好完整学习一下引导相关的知识。本篇文章大致会涉及MBR、GPT、UEFI等内容,以使用Grub引导Linux为例,来分析启动的具体过程。
磁盘中可以被划分成一个一个的环,每个环都是一个磁道。每个磁道又可以被均分成一个一个的扇区,扇区是磁盘IO的基本单位(想要修改扇区中的一个比特位就必须把该扇区的全部比特位都加载到内存中)。磁盘中的盘面,磁道和扇区都是有编号的。要访问一个扇区中的内容,必须通过磁头先定位到哪一个磁道(柱面cylinder),再确定要读取哪一个盘面(磁头head),最后确定磁道上的哪一个扇区(sector),这种定位法被称为CHS定位法。
哈喽,大家好。今天我们学习文件系统,我们之前在Linux基础IO中研究的是进程和被打开文件之间的关系,以及如何管理被打开的文件。那么,在磁盘中没有被打开的文件应该怎样管理呢?今天,我们一块研究一下。我们开始啦!
CentOS 7 之前,使用 service 命令来管理服务,7 之后使用 systemctl 命令来管理服务。 软件包安装的服务单元存储在 /usr/lib/systemd/system/
很久以前喜欢捣鼓电脑啊外设什么的,却也没有搞出什么名堂。经常见到标题里的一些术语,却也只是一知半解。最近在复习操作系统,对以往的瞎捣鼓小有感触和总结。故写下此文。
电流通过导体时,会在导体的周围会产生感应磁场。感应磁场的磁极随电流方向的改变而改变。
概述 盘片(platter) 磁头(head) 磁道(track) 扇区(sector) 柱面(cylinder) 盘片 片面 和 磁头 硬盘中一般会有多个盘片组成,每个盘片包含两个面,每个盘面都对应
我们在之前的文章中讨论的都是进程和被打开的文件的关系,但是如果一个文件时没有被打开,它是否需要被管理?它该如何被管理呢? 本文介绍了文件存储的位置:磁盘,它的三种结构(物理结构、存储结构以及逻辑结构);管理文件的结构:文件系统与inode;以及文件与inode之间的关系:软硬链接等相关概念。
平常在VMware上创建Linux系统虚拟机的时候,往往当时不会给太多的磁盘空间,在后期的使用过程中经常会遇到磁盘空间不足的情况,需要对Linux系统扩展磁盘空间。
我们之前讨论的都是进程和被打开文件的关系,而如果一个文件是没有被打开呢?没有被打开的文件操作系统如何管理?
Linux上的文件系统一般来说就是EXT2或EXT3,但这篇文章并不准备一上来就直接讲它们,而希望结合Linux操作系统并从文件系统建立的基础——硬盘开始,一步步认识Linux的文件系统。
「 总感觉当下的生活不是想要的,总感觉一路走下去会是一个讨厌的未来,每天睁眼的一瞬间就是懊悔,昨天又浪费掉了...人生没有意义,但是要努力寻找活着的意义--------山河已无恙」
1. 如果没有fork创建子进程的步骤,无论是运行进程还是将运行结果重定向到log.txt文件,两者输出结果都是相同的,均为4条打印信息
索引节点(inode)是持久化存储到磁盘中的,而目录项(dentry)是由内核维护(目录项缓存)的。
理解inode,要从文件储存说起。 文件储存在硬盘上,硬盘的最小存储单位叫做"扇区"(即:Sector)。每个扇区储存512字节(相当于0.5KB)。 操作系统读取硬盘的时候,不会一个个扇区地读取,这样效率太低,而是一次性连续读取多个扇区,即一次性读取一个"块"(block)。这种由多个扇区组成的"块",是文件存取的最小单位。"块"的大小,最常见的是4KB,即连续八个 sector组成一个 block。 文件数据都储存在"块"中,那么很显然,我们还必须找到一个地方储存文件的元信息,比如文件的创建者、文件的创建日期、文件的大小等等。这种储存文件元信息的区域就叫做inode,中文译名为"索引节点"。 block中存储的就是文件的实际数据,比如说,照片,视频,音频等等,但是有一点需要注意!就是inode当中不包含文件名!一个文件的文件名,存储在上级目录的block中! 其实inode和block之间的关系就像是一本书一样,inode是一本书的目录,一本书会有很多内容,一个知识点或者一个故事会占很多页,一个block就相当于书中的一页内容。
文件操作的本质是进程与被打开的文件之间的关系。那么没有被打开的文件怎么办?OS如何去管理它们?没有被打开的文件,安安静静地在磁盘里面放着,磁盘中存在大量的文件,这些没有被打开的文件,被OS静态管理起来,方便随时打开。管理被打开文件,叫做文件系统,虚拟文件系统,管理没有被打开的文件,也称为文件系统,躺着的文件系统。
在上一节中,我们学习了操作系统对被打开文件的管理,但是对于一台计算机来说,磁盘上大部分的文件是未被打开的,而这些文件也需要被静态管理起来,方便我们随时打开。操作系统对未打开文件的管理,称为文件系统。
首先,让我们看一下硬盘的发展史: 1956年9月13日,IBM的IBM 350 RAMAC(Random Access Method of Accounting and Control)是现代硬盘的雏形,整个硬盘需要50个直径为24英寸表面涂有磁浆的盘片,它相当于两个冰箱的体积,不过其存储容量只有5MB。 1971年,IBM开始采用一种名叫Merlin的技术生产硬盘,这种技术据称能使硬盘头更好地在盘片上索引。 1973年,IBM 3340问世,主流采用采用红色。这个大家伙每平方英寸存储1.7MB的数据,在当
4.1 df命令 df命令介绍 df命令,汇报文件系统磁盘的使用情况 [root@localhost ~]# df 文件系统 1K-块 已用 可用 已用% 挂载点 /dev/sda3 18658304 1179512 17478792 7% / devtmpfs 494376 0 494376 0% /dev tmpfs 504196 0 504196 0% /dev/shm t
我在知乎和公众号上都提到过,我 2012 在腾讯工作的时候写过一篇《Linux文件系统十问》。总有人问我这篇文章在哪里能看到,如今外网唯一的正版链接-腾讯学堂也挂了,网上能搜到的全是盗版。所以今天我干脆就正式给大家发一遍。
登录该服务器后通过iostat -x 1 10查看了相关磁盘使用信息。相关截图如下:
本次分享的案例是由于机房突然断电导致整个存储瘫痪,加电后存储依然无法使用。经过用户方工程师诊断后认为是断电导致存储阵列损坏。整个存储是由12块盘组成的RAID-6磁盘阵列,被分成一个卷,分配给几台Vmware的ESXI主机做共享存储。整个卷中存放了大量的Windows虚拟机,虚拟机基本都是模板创建的,系统盘都为统一大小,数据盘大小不确定,并且数据盘都是精简模式。
linux基本命令 预习内容 1.磁盘管理命令 df 1.1 查看磁盘使用情况 df -h 1.2 查看swap使用情况 1.3 查看磁盘inode使用情况 df -i 1.4 磁盘使用情况用M显示 df -m 2.查看目录文件大小 du -sh 3.磁盘分区、格式化、挂载 3.1 虚拟机添加一块10g的磁盘,添加完成重启虚拟机 3.2 磁盘划分分区 fdisk 3.3 磁盘格式化 3.3.1 mke2fs -t ext4 -b 2048 /dev/sdb1 3.3.2 mkfs.ext4 /dev
将数据保存在存储介质上,除了需要一个好的存储介质之外,还需要一个适当的机制去管理这些存储介质上的数据,以便上层应用包括操作系统可以方便快捷的访问到这些数据。传统上我们知道进行磁盘管理都是通过一些工具进行操作的,那么这些工具是否一定与操作系统有关呢?不是的,因为从操作系统角度来看,操作系统虽然一般具有文件系统管理功能,但本质上文件管理系统它是比较独立的一个功能,显然可见的,就是操作系统可以支持多个文件系统,如LINUX支持ext2,ext3等,Windows 7扶持fat32也支持NTFS,实际上LINUX也是支持NTFS的。从文件系统角度来看,文件系统将数据以文件、目录方式进行。组织。那么从磁盘的角度来说,应该怎么管理这些空间呢?我们前面了解到磁盘一般都分磁道和扇区,那么这些磁盘和扇区是如何与文件系统对应上的呢?。这里需要了解磁盘管理的两个关键:磁盘分区和磁盘格式化。进行磁盘管理一般都是采用一些专用的工具进行的,这些工具可以实现我们想要的如磁盘分区和格式化功能。通常将磁盘划分成多个分区(partitions),然后操作系统通过磁盘驱动程序来读取这些硬盘上的分区信息。一般的LINUX上根据不同的接口类型显示分区名,如IDE接口是hde[1—],SCSI接口是sda[1—]等,在Windows上通常分为C、D、…等。当硬盘分成各个不同大小的区后,格式化软件会将这些区再细分成不同的文件系统管理格式,比喻说C盘是NTFS格式,D盘可能是FAT32格式。同样在LINUX下也是将文件目录mount到指定分区的。因此分区对磁盘非常重要。这里讲述几个常见软件的操作:
正常情况下,svctm应该是小于await值的,而svctm的大小和磁盘性能有关,CPU、内存的负荷也会对svctm值造成影响,过多的请求也会间接导致svctm值的增加。
服务器:一直开机,不要宕机。(对硬件损耗巨大,极易损坏,要做好监控,防患于未然)
领取专属 10元无门槛券
手把手带您无忧上云