标题:Dynamic 3D Scene Analysis by Point Cloud Accumulation
论文:Instantaneous Perception of Moving Objects in 3D
在今年 6 月召开的 CVPR2018 上,德国图宾根大学及马克斯·普朗克研究所(MPI)自动视觉组负责人 Andreas Geiger 教授摘得了 PAMI Young Researcher Award,该奖项颁发给 7 年内获得博士学位且早期研究极为有潜力的研究人员。
只需“100K大小的外挂”,就能让自动驾驶AI识别“物体运动状态”的能力大幅上升!
运动预测(Motion Prediction)模块主要解决自动驾驶车辆与周围环境中的其它运动物体(车辆、行人等)的协同交互问题。该模块对感知模块所检测到的运动物体进行未来一段时间内行为意图的预测,并将预测的结果转化为时间维度和空间维度的轨迹。以这些障碍车、行人、非机动车等运动物体的预测轨迹作为输入,自动驾驶车辆可以做出更加合理的驾驶决策,规划出更加合理、安全的车辆运动行为。
光流的概念是Gibson在1950年首先提出来的。它是空间运动物体在观察成像平面上的像素运动的瞬时速度,是利用图像序列中像素在时间域上的变化以及相邻帧之间的相关性来找到上一帧跟当前帧之间存在的对应关系,从而计算出相邻帧之间物体的运动信息的一种方法。一般而言,光流是由于场景中前景目标本身的移动、相机的运动,或者两者的共同运动所产生的。其计算方法可以分为三类:
提出基于自适应的多分辨率Range Image的动态点移除算法,并使用紧耦合的激光雷达惯导里程计,首先去除移动物体,然后将激光雷达扫描与子图相匹配,构建基于优先移除的面向高动态场景的LIO。
大家好,又见面了,我是你们的朋友全栈君。 盯住梅西:TensorFlow目标检测实战 https://baijiahao.baidu.com/s?id=1581115075233058548&wfr=
随着人类对生物系统的深入研究,我们不断从自然界中汲取灵感,以改进和创新技术。仿生视觉就是其中之一,通过模拟生物视觉系统的工作原理,设计出具有类似功能的传感器。本文将介绍仿生视觉技术在传感器设计中的应用,详细探讨其部署过程,并结合实例和代码解释,帮助读者更好地理解和应用这一技术。
不得不说MATLAB的图像处理函数有点多,但速度有时也是出奇的慢。还是想c的指针,虽然有点危险,但速度那是杠杠的。 第二个MATLAB程序,对运动物体的识别与追踪。 这里我们主要运用帧差法实现运动物体与背景图像的分离,由于视频中的物体较为简单,我们只对两帧图像取帧差(也是为了提高速度) 对于运动物体的提取我们运用了MATLAB里自带的函数bwareaopen bwareaopen(src,int),src为二值图像,int为设置的联通域的大小,是对帧差法,在转化为二值的图像进行操作,结果是将大小小于设定的int的连通域置为0; 对于第一帧与第二帧图像运动物体的坐标的提取我们用了自带的regionprops函数 regionprops(src,’‘)其中src为传入的二值图像,’‘内的为你所需要的属性 具体属性可以查看MATLAB的help
文章:Robust Frame-to-Frame Camera Rotation Estimation in Crowded Scenes
在Unity3D中,有多种方式可以改变物体的坐标,实现移动的目的,其本质是每帧修改物体的position。
本篇文章目的将为你详细罗列 Python OpenCV 的学习路线与重要知识点。核心分成 24 个小节点,全部掌握,OpenCV 入门阶段就顺利通过了。
6月22日,北京智源大会举行了认知神经基础专题论坛,来自北京师范大学认知神经科学与学习国家重点实验室的毕彦超教授、北京大学心理与认知学院的方方教授、北京师范大学心理学部的刘嘉教授、北京大学计算机系的吴思教授、中国科学院自动化研究所的余山教授分别做了报告,共同探究认知神经科学能为AI带来什么启发。
文章:Lidar with Velocity: Motion Distortion Correction of Point Clouds from Oscillating Scanning Lidars
Device-Free Gesture Tracking Using Acoustic Signals
代码已开源:https://github.com/PRBonn/LiDAR-MOS
在机器视觉中,在检测连续物体或者滚动物体时,线扫相机是最佳的解决方案。通常,它们能提供很高的分辨率,因为它们要求很高的速度和数据率。
作为计算机视觉领域的顶级学术会议,CVPR 2019 近期公布了最终论文接收结果,引来学界密切关注。据悉,CVPR 2019 今年一共获得 5165 篇有效提交论文,最终抉出了 1300 篇接收论文,接收率达到 25.2% 。
光流的概念是Gibson在1950年首先提出来的。它是空间运动物体在观察成像平面上的像素运动的瞬时速度,是利用图像序列中像素在时间域上的变化以及相邻帧之间的相关性来找到上一帧跟当前帧之间存在的对应关系,从而计算出相邻帧之间物体的运动信息的一种方法。一般而言,光流是由于场景中前景目标本身的移动、相机的运动,或者两者的共同运动所产生的。
虽然近年来无监督单目深度学习取得了很大的进展,但仍然存在一些基本问题。首先,目前的方法存在尺度模糊性问题,因为反推过程对于深度和平移来说相当于任意尺度因子。其次,光度误差对照明变化和移动物体敏感。此外,尽管在无监督学习框架下已经为光度误差图引入了不确定性,但自我运动的不确定性度量仍然是重要的。在2022 ECCV论文"Towards Scale-Aware, Robust, and Generalizable Unsupervised Monocular Depth Estimation by Integrating IMU Motion Dynamics",作者提出了一种感知框架,通过集成视觉和IMU来进行真实尺度估计,算法已经开源。
为了改善自动驾驶系统的安全性,MIT的几位工程师近日开发了一个新的系统。它可以识别地面上的影子,进而判断拐角处是否有物体正在靠近车辆。
文章:Optical Flow Based Motion Detection for Autonomous Driving
为了实现AI-Complete(AI-Hard,AI完全)问题,我们需要一些测量方法,最著名的测量方法当属图灵测试。一个可以解决AI完全问题的机器应该在必要辅助的设备帮助下,可以完成人类能够完全的所有任务,亦即它像人类一样的智能(Intelligent),我们便称其为强人工智能(True AI或Strong AI)。这些人类可以完成的任务,我们称之为人工智能任务,简称AI任务,AI任务有不同的难易程度,所谓难易是基于所需要的智力资源的多少,一般呈现到科学技术领域,表现出来的是越容易模拟实现的AI任务越简单,越难于模拟实现的任务越困难,目前还有很多AI任务,除人类以外没有任何对象可以完成。
尽管摄影自诞生以来,无数人都在探索相机这个工具究竟能发挥那些作用。但一个最基本的作用,就是把我们眼睛看到的通过摄影来记录下来。
文章:Multi-level Map Construction for Dynamic Scenes
本文针对视频中多目标运动物体分割问题,提出使用 CNN 网络分三个步骤来解决:前景分割、物体类别识别、分割精细化。首先,采用 ResNet-101 模型进行前景分割,通过去掉全连接层和融合多尺度卷积层信息来改进。其次,采用类似前景分割的网络进行物体类别识别。最后,在前景分割和物体类别识别的基础上,采用 Spatial Propagation Network 和 Connected Region-aware Filter 进行分割精细化。实验结果表明,该方法在视频物体分割任务上取得了较好的效果。
Root 编译整理 量子位 出品 | 公众号 QbitAI 除了CV、NLP、无人驾驶,AI的下一个热门方向是什么? 视频行为理解。 现在,对于AI来说,识别静态图片里的动物是喵?还是汪?已经是小ca
由于种种原因,最近想亲自做一个基于python&facepp打造的智能监控系统。 0x00:萌芽 1:暑假在家很无聊 想出去玩,找不到人。玩个lol(已卸载),老是坑人。实在是无聊至极,不过,就在前天
7月12日,我们发出英雄帖,擂台:灵异视频辨真伪(点击查看),希望有专家可以辨别视频的真伪。昨天,我们收到了格灵深瞳的分析,非常严谨!他们逐帧分析了视频并结合了光影原理给出结论,解释了很多人心中的疑惑。 格灵深瞳(http://www.deepglint.com/)是全球第一家采用三维计算机视觉技术,将人工智能应用于商业领域的科技公司,致力于让计算机像人一样看懂这个世界,并且把这一技术率先用在了安防监控和交通、汽车等领域。 联合创始人、CEO何搏飞毕业于斯坦福大学商学院,曾担任多家跨国公司中国区总经理;联合
工业4.0时代,三维机器视觉备受关注,目前,三维机器视觉成像方法主要分为光学成像法和非光学成像法,这之中,光学成像法是市场主流。
项目Github地址:https://github.com/hehern/lidar_perception
作者:Basile Van Hoorick, Pavel Tokmakov, Simon Stent, Jie Li, Carl Vondrick
背景减除(Background Subtraction)是许多基于计算机视觉的任务中的主要预处理步骤。如果我们有完整的静止的背景帧,那么我们可以通过帧差法来计算像素差从而获取到前景对象。但是在大多数情况下,我们可能没有这样的图像,所以我们需要从我们拥有的任何图像中提取背景。当运动物体有阴影时,由于阴影也在移动,情况会变的变得更加复杂。为此引入了背景减除算法,通过这一方法我们能够从视频中分离出运动的物体前景,从而达到目标检测的目的。 OpenCV已经实现了几种非常容易使用的算法。 环境 Python 3.6
机器之心专栏 作者:单乐 本届 CVPR 2017大会上出现了很多值得关注的精彩论文,国内自动驾驶创业公司 Momenta 联合机器之心推出 CVPR 2017 精彩论文解读专栏,本文是此系列专栏的第四篇,介绍了 UC Berkeley 与谷歌在大会上展示的 Oral 论文《Unsupervised Learning of Depth and Ego-Motion from Video》,作者为 Momenta 高级研发工程师单乐。 给定一张图像,人类可以根据以往的视觉经验推断出 3D 景深,而如何让计算机
奇点大学公开课-颠覆你的思维 11月24日,百度百家举办第六次线下活动,邀请了奇点大学的三位讲师在太庙开公开课。 左:Raymond 中:Neil 右:Brad 有幸参加了baidu百家的奇点大学
如图1所示,交通摄像头对公路上移动的汽车进行实时的定位,随着小汽车的移动,红色框也跟随小汽车移动,实时将小汽车框起来。
说起人工智能,孕育了卷积神经网络和深度学习算法的 ImageNet 挑战赛恐怕是世界上最著名的 AI 数据集。8 年来,在 ImageNet 数据集的训练下,人工智能对于图像识别的准确度整整提高了 10 倍,甚至超越了人类视觉本身。
导读:2017年1月15日,李飞飞教授出席未来论坛2017年会暨首届未来科学颁奖典礼,发表名为《视觉智能的探索》 (The Quest for Visual Intelligent)演讲。李飞
(VDO-SLAM :A Visual Dynamic Object-aware SLAM System)
AI科技评论按:2017年1月15日,李飞飞教授出席未来论坛2017年会暨首届未来科学颁奖典礼,发表名为《视觉智能的探索》 (The Quest for Visual Intelligent)
SIGGRAPH Asia 今年首次来到内地,于 12月3日在深圳国际会议中心开幕。此次,微软亚洲研究院共有七篇论文入选此次大会,研究员们也会大会现场进行演讲和项目演示。在这里,我们特别挑选了三篇精彩的入选论文,和大家分享一下论文背后的技术设想。他们的共同关注点都是如何利用设备更好地捕捉和呈现现实中的人物和场景,但是每一篇论文的项目都有独特的切入点。
目前大多数人都关注点都在超分辨率技术上,为何不Pick一下帧率上采样呢?
入侵探测在安防场景中应用较久,指的是外界物体(人、车或其他物体)不经允许擅自进入规定区域时,通过某种途径或方式进行阻止或提醒监管人员注意。目前较为常见的人员入侵检测有电子围栏入侵探测、红外对射探测、震动电缆入侵探测等等。随着人工智能计算机视觉技术的快速发展,基于AI深度学习算法的入侵检测也越来越普及。
之前在专栏的第一篇文章中介绍了一下关于层模型(layered model)的工作,并给自己挖了几个坑。今天让我来填其中一个坑:视频中的物体低延迟检测。由于这一系列工作目前贡献了一篇cvpr17和一篇iccv19共两篇论文,我将分上下两篇文章分别介绍,希望可以把工作的背景、思路、坑、相关思考和一些不在论文发表内容中的故事说明白。还是和上一篇一样,希望写出来的的不是机械的公式或者吹得天花乱坠神乎其神的PR,而是一些原理性的东西以及背后思考的过程。
很多刚刚接触Unity3d的童鞋花了大量的时间自学,可总是把握不好Unity3d的烘焙,刚从一个坑里爬出来,又陷入另一个新的坑,每次烘焙一个场景少则几个小时,多则几十个小时,机器总是处于假死机状态,半天看不到结果,好不容易烘焙完了,黑斑、撕裂、硬边、漏光或漏阴影等缺陷遍布,惨不忍睹,整体效果暗无层次,或者苍白无力,灯光该亮的亮不起来,该暗的暗不下去,更谈不上有什么意境,痛苦的折磨,近乎失去了信心,一个团队从建模到程序,都没什么问题,可一到烘焙这一关,就堵得心塞,怎么也搞不出好的视觉效果,作品没法及时向用户交付,小姐姐在这里分享一些自己的经验,希望能帮到受此痛苦折磨的朋友,话不多说,开工!
上述代码是将gameObject的本地坐标transform.localPosition,变成一个我们赋予的新坐标new Vector3(0, 0, 100),按照我们设置的一个float的速度进行移动
不过在这个各种人设被推翻的时代,学者们也在尝试反转机器人笨重,单一的刻板印象。耶鲁大学研发出的最新的“机器皮”技术,能够将物体动起来,让日常万物都变成机器人。
面向用户体验的感知视频编码即通过机器学习检测用户感兴趣的视觉感知区域,并重新分配以更多的码率与复杂度。本文来自北京航空航天大学副教授、博士生导师 徐迈在LiveVideoStack 线上交流分享,
文章:RD-VIO: Robust Visual-Inertial Odometry for Mobile Augmented Reality in Dynamic Environments
领取专属 10元无门槛券
手把手带您无忧上云