虽然计算机相关专业,操作系统和计算机组成原理是必修课。但是大学时和真正从事相关专业工作之后,对于知识的认知自然会发生变化。还很有可能,一辈子呆在学校的老师们只是照本宣科,自己的理解也不深。所以今天我站在真正排查解决问题时的需要层面,用白话说一说linux操作系统的那些知识。
IO就是输入输出,这个输入输出的对象是针对主存来说的,往主存上复制数据就是输入,从主存上往外部设备上复制就是输出。这些外部设备包括磁盘驱动器,终端和网络等。对于Unix系统来说,一切都被抽象成文件,对于IO操作,实际上就是对文件进行操作。
前面一直在说各种协议,偏理论方面的知识,这次咱们就来认识下基于 TCP 和 UDP 协议这些理论知识的 Socket 编程。
本篇是高性能、高并发系列的第三篇,承接上文《读取文件时程序经历了什么》,在讲解了进程、线程以及I/O后,我们来到了高并发中又一关键技术,即I/O多路复用。
socket编程的demo中使用的都是最基本的,但是一般不会真正用在项目中的代码。而实际项目中,需要面临复杂多变的需求环境,比如有多个socket连接,或者服务需要监听的时候,可能有很多socket连接进来。面对这种情况,最直接最简单的想法是,一个socket连接创建一个线程去处理。当然,在socket连接数较少的情况下,这种方式无可厚非,但是如果连接数量较大,就会出现意外情况。
1.概述 在实际工作中会经常遇到一些bug,有些就需要用到文件句柄,文件描述符等概念,比如报错: too many open files, 如果你对相关知识一无所知,那么debug起来将会异常痛苦。在Linux操作系统中,文件句柄(包括Socket句柄)、打开文件、文件指针、文件描述符的概念比较绕,而且windows的文件句柄又与此有何关联和区别?这一系列的问题是我们不得不面对的。 这里先笼统的将一下自己对上面的问题的一些理解: 句柄,熟悉Windows编程的人知道:句柄是Windows用来标识被应用程序
通过前面的文章我们已经了解了「数据包从HTTP层->TCP层->IP层->网卡->互联网->目的地服务器」以及「数据包怎么从网线到进程,在被应用程序使用」涉及的知识。 本文将继续介绍网络编程中的各种细节和IO多路复用的原理。
作为即时通讯技术的开发者来说,高性能、高并发相关的技术概念早就了然与胸,什么线程池、零拷贝、多路复用、事件驱动、epoll等等名词信手拈来,又或许你对具有这些技术特征的技术框架比如:Java的Netty、Php的workman、Go的nget等熟练掌握。但真正到了面视或者技术实践过程中遇到无法释怀的疑惑时,方知自已所掌握的不过是皮毛。
Redis的高性能和他的事件模型是密不可分的,最大程度上利用了单线程、非阻塞IO模型来快速的处理请求(单线程处理多链接)。这里存在一个问题,其实严格意义上来讲,Redis 是单线程对外提供服务,redis内部并不单线程的,还存在一些关于数据持久化的线程。
首先,我们要了解IO复用模型之前,先要了解在Linux内核中socket事件机制在内核底层是基于什么机制实现的,它是如何工作的,其次,当我们对socket事件机制有了一个基本认知之后,那么我们就需要思考到底什么是IO复用,基于socket事件机制的IO复用是怎么实现的,然后我们才来了解IO复用具体的实现技术,透过本质看select/poll/epoll的技术优化,逐渐去理解其中是为了解决什么问题而出现的,最后本文将围绕上述思维导图列出的知识点进行分享,还有就是文章幅度较长且需要思考,需要认真阅读!
输入输出(input/output)的对象可以是文件(file), 网络(socket),进程之间的管道(pipe)。在linux系统中,都用文件描述符(fd)来表示。
该文介绍了中断和异常的基本概念、分类,以及Linux 中中断和异常的处理方式,包括硬件中断、软件中断和异常的分类和处理。
在Linux系统中一切皆可以看成是文件,文件又可分为:普通文件、目录文件、链接文件和设备文件。 文件描述符(file descriptor)是内核为了高效管理已被打开的文件所创建的索引,其是一个非负整数(通常是小整数),用于指代被打开的文件,所有执行I/O操作的系统调用都通过文件描述符。 程序刚刚启动的时候,0是标准输入,1是标准输出,2是标准错误。如果此时去打开一个新的文件,它的文件描述符会是3。POSIX标准要求每次打开文件时(含socket)必须使用当前进程中最小可用的文件描述符号码,因此,在网络通信过程中稍不注意就有可能造成串话。标准文件描述符图如下:
Socket,原意插座、插口。写软件程序时,可以想象成一根网线,一头插在客户端,一头插在服务端,然后进行通信。所以通信前,双方都要建立一个Socket。
在这个连接的生命周期里,绝大部分时间都是空闲的,活跃时间(发送数据和接收数据的时间)占比极少,这样独占一个服务器是严重的资源浪费。事实上所有的服务器都是高并发的,可以同时为成千上万个客户端提供服务,这一技术又被称为IO复用。
Linux有Linux kernal,我们的客户端,进行连接,首先到达的是Linux kernal,在Linux的早期版本,只有read和write进行文件读写。我们使用一个线程/进程 进行调用read和write函数,那么将会返回一个文件描述符fd(file description)。我们开启线程/进程去调用read进行读取。因为socket在这个时期是blocking(阻塞的),遇到高并发,就会阻塞,也就是bio时期。
在 Linux 中,最直观、最可见的部分就是 文件系统(file system)。下面我们就来一起探讨一下关于 Linux 中国的文件系统,系统调用以及文件系统实现背后的原理和思想。这些思想中有一些来源于 MULTICS,现在已经被 Windows 等其他操作系统使用。Linux 的设计理念就是 小的就是好的(Small is Beautiful) 。虽然 Linux 只是使用了最简单的机制和少量的系统调用,但是 Linux 却提供了强大而优雅的文件系统。
本文经 CyC2018 大佬授权发表,更多技术内容请前往 https://github.com/CyC2018/CS-Notes 查看。
1.文件描述符 ---- linux下的文件描述符是一个用于表述指向文件的引用的抽象化概念(在windows下是HANDLE句柄). 文件描述符在形式上是一个非负整数值.但实际上,他是一个索引值,指向系统内核为每个进程维护的一张记录表. 在这张记录表上记录每个进程打开的文件对应的文件结构体信息. 那么也就是说,文件描述符不存在事件这一说法,文件描述符本身不会产生事件,但文件描述符对应的文件可能会因为modify而产生事件. 这些事件是怎么产生的,由谁产生的,怎样让epoll捕捉到此事件.都是系统在对事
与任何操作系统一样,在运行 Linux 和相关应用程序时遇到问题并不罕见。在使用闭源程序时尤其如此,因为无法进行精细的代码检查。因此,排除故障和解决问题并不是一个简单的过程。Linux 管理员和工程师很快发现需要补充实用程序。值得庆幸的是,他们并没有等太久。
今天来了解一下linux里面的一些小知识,学习一下linux里面的最大进程数,最大文件描述,最大线程数的问题。下面依次介绍: (一)Linux系统中最大可以起多少个进程? (1)32位系统中最多可以起
fd 是(file descriptor)即文件描述符,这种一般是BSD Socket的用法,用在Unix/Linux系统上。fd全称是file descriptor,是进程独有的文件描述符表的索引。
在 Linux 平台上运行的进程都会从系统资源申请一定数量的句柄,而且系统控制了进程能够申请的最大句柄数量。用户程序如果不及时释放无用的句柄,将会引起句柄泄露,从而可能造成申请资源失败,导致系统文件句柄用光连接不能建立。本文主要介绍Linux下如何查看和修改进程打开的文件句柄数,避免这类问题的发生。
我们在Linux下经常要用到管道操作符,也就是"|",即一个竖线。 这个操作符的作用对于经常使用Linux的人来说,看上去十分直观:
阻塞操作是指在执行设备操作时,若不能获得资源,则挂起进程直到满足可操作的条件后再进行操作。被挂起的进程进入睡眠状态,被从调度器的运行队列移走,直到等待的条件被满足。而非阻塞操作的进程在不能进行设备操作时,并不挂起,它要么放弃,要么不停地查询,直至可以进行操作为止。
Linux的核心思想之一就是”一切皆文件”。即Linux中所有的内容都是以文件的形式保存和管理的,它为不同类型的文件提供了统一的操作接口,对于不同类型的文件,我们都可以使用fopen()/fclose()/fwrite()/fread()等对这些文件进行读写处理。在Linux中,普通文件、目录、链接文件、字符设备、块设备以及网络套接字等等都以文件的形式存在。
Netty作为高性能的网络通信框架,它是IO模型演变过程中的产物。Netty以Java NIO为基础,是一种基于异步事件驱动的网络通信应用框架,Netty用以快速开发高性能、高可靠的网络服务器和客户端程序,很多开源框架都选择Netty作为其网络通信模块。本文主要通过分析IO模型的优化演进之路,比较不同IO模型的异同,让大家对于Java IO模型有着更加深刻的理解,我想这也是Netty如何实现高性能网络通信理解的重要基础。话不多说,我们赶紧发车了。
在日常使用Linux命令时候,经常使用重定向或者管道的方式处理命令的结果。以前对这两个命令的使用场景存在一些困惑,所以本文对这两个命令进行详细的总结。
那是不是所有磁盘的文件都被打开呢?显然不是这样!因此我们可以将文件划分成两种:a.被打开的文件;b.没有被打开的文件 。对于文件操作,一定是被打开的文件才能进行操作,本篇文章只会讲解被打开的文件。
http://blog.csdn.net/hguisu/article/details/38638183(牛逼100多名)
每一次客户端连接,都会在linux内核 指定区域创建一个文件描述符,并指向一个 "文件" 每个文件描述符(对应一个客户端连接 ,socket) 一旦开始被线程处理,便必须等该连接释放线程才能切换(否则中断后,数据丢失了) 在java中,每接到一个连接,便copy主线程(java进程) 一份作为子线程 去处理客户端的连接来解决阻塞的问题,这使 java web 服务端能够以多线程的形式处理多个客户端的连接;
对于一个套接字上的输入操作,第一步通常涉及等待数据从网络中到达。当所等待数据到达时,它被复制到内核中的某个缓冲区。第二步就是把数据从内核缓冲区复制到应用进程缓冲区。
欢迎支持笔者新作:《深入理解Kafka:核心设计与实践原理》和《RabbitMQ实战指南》,同时欢迎关注笔者的微信公众号:朱小厮的博客。
I/O多路复用就是通过一种机制,可以同时监视多个描述符,一旦某个描述符就绪(一般是读就绪或者写就绪),能够通知程序进行相应的读写操作。
在Linux系统中,fd命令是一条用于显示文件描述符(File Descriptor)的命令。文件描述符是操作系统用于跟踪和管理打开文件的整数值,它是对打开文件的引用。通过fd命令,我们可以查看当前进程所打开的文件描述符及其相关信息,包括文件描述符的编号、打开模式、文件路径等。
作者:mingguangtu,腾讯 IEG 后台开发工程师 select/poll/epoll 是 Linux 服务器提供的三种处理高并发网络请求的 IO 多路复用技术,是个老生常谈又不容易弄清楚其底层原理的知识点,本文打算深入学习下其实现机制。 Linux 服务器处理网络请求有三种机制,select、poll、epoll,本文打算深入学习下其实现原理。 吃水不忘挖井人,最近两周花了些时间学习了张彦飞大佬的文章 图解 | 深入揭秘 epoll 是如何实现 IO 多路复用的 和其他文章 ,及出版的书籍《深入理
构建现代的服务器应用程序需要以某种方法同时接收数百、数千甚至数万个事件,无论它们是内部请求还是网络连接,都要有效地处理它们的操作。
为了控制进程的执行,内核必须有能力挂起正在CPU上运行的进程,并恢复以前挂起的某个进程的执行。这种行为被称为进程切换。
如果出现了很多的客户端连接,比如1000个,那么应用程序就会启用1000个进程或线程阻塞等待。此时会出现性能问题:
Socket编程进行的是端到端的通信,基于网络层和传输层的实现。在网络层,Socket 函数需要指定到底是 IPv4 还是IPv6。传输层需要指定是tcp还是udp。 基于TCP协议的socket调用过程:
select、poll 和 epoll 都是 Linux API 提供的 IO 复用方式。
Linux文件操作 Linux中,一切皆文件(网络设备除外)。 硬件设备也“是”文件,通过文件来使用设备。 目录(文件夹)也是一种文件。 Linux文件的结构 root:该目录为系统管理员(也称作超级管理员)的用户主目录。 bin:bin是Binary的缩写,这个目录存放着最经常使用的命令。 boot:这里存放的是启动Linux时使用的一些核心文件,包括一些连接文件和镜像文件。 deb:deb是Device(设备)的缩写,该目录下存放的是Linux的外部设备,在Linu
redis是单线程的(不严谨的讲法的哈),为什么还这么快,很多人相信会回答因为redis是基于内存操作的, 内存的读写速度是非常快的。答到这,逼格还是不够高的,基于内存是一方面,但还有一个关键点是:redis采用了多路复用技术,今天我们就来聊聊这个点。
上一次我们说到了文件的常规操作,打开,读,写,关闭这些,重点在于打开是以什么样的方式来打开,包括文件的权限,内容是否清空,打开不存在的文件等等情形。今天继续说一下文件IO操作。
要想客户端和服务器能在网络中通信,那必须得使用 Socket 编程,它是进程间通信里比较特别的方式,特别之处在于它是可以跨主机间通信。
领取专属 10元无门槛券
手把手带您无忧上云