微服务治理中限流、熔断、降级是一块非常重要的内容。目前市面上开源的组件也不是很多,简单场景可以使用Guava,复杂场景可以选用Hystrix、Sentinel。今天要说的就是Sentinel,Sentinel是一款阿里开源的产品,只需要做较少的定制开发即可大规模线上使用。从使用感受上来说,它有以下几个优点:
CPU使用率指的是程序在运行期间实时占用的CPU百分比,这是对一个时间段内CPU使用状况的统计。
在文章中,我们提到了 Linux 用来管理和限制 Linux 进程组资源使用的 CGroup 机制。本文我们就来详细介绍一下。
什么是CPU时间片?我们现在所使用的Windows、Linux、Mac OS都是“多任务操作系统”,就是说他们可以“同时”运行多个程序,比如一边打开Chrome浏览器浏览网页还能一边听音乐。
系统负载:在Linux系统中表示,一段时间内正在执行进程数和CPU运行队列中就绪等待进程数,以及非常重要的休眠但不可中断的进程数的平均值(具体load值的计算方式,有兴趣可以自行深究,这里不深究)。说白了就是,系统负载与R(Linux系统之进程状态)和D(Linux系统之进程状态)状态的进程有关,这两个状态的进程越多,负载越高。
CPU 利用率,又称 CPU 使用率。顾名思义,CPU 利用率用于描述 CPU 的运行情况,反映了一段时间内 CPU 被程序占用的情况。使用率越高,表示计算机在该时间段内运行了更多的程序,反之则较少。CPU 的利用率与其性能直接相关。
提到CPU利用率,就必须理解时间片。什么是CPU时间片?我们现在所使用的Windows、Linux、Mac OS都是“多任务操作系统”,就是说他们可以“同时”运行多个程序,比如一边打开Chrome浏览器浏览网页还能一边听音乐。
Linux 进程是操作系统中运行的程序的实例。每个进程都有自己的内存空间和执行环境,它们彼此隔离,以确保安全性和稳定性。在 Linux 中管理进程是非常重要的,下面我将详细教你如何处理 Linux 进程。
内存量,缓存大小,读取和写入磁盘的速度以及处理能力的速度和可用性都是影响基础架构性能的关键因素。在本教程中,我们将重点介绍CPU监控概念以及警报策略。我们将介绍如何使用两个常见的Linux实用程序,uptime命令和top命令了解CPU负载和利用率,以及如何设置腾讯云警报策略以通知您有关CVM CPU的高负载情况。
在服务器运维过程中,经常需要对服务器的各种资源进行监控,例如:CPU的负载监控,磁盘的使用率监控,进程数目监控等等,以在系统出现异常时及时报警,通知系统管理员。本文介绍在Linux系统下几种常见的监控需求及其shell脚本的编写。
说真的,这就是《我想进大厂》系列第八篇,但是Linux的问题确实很少,就这样,强行编几个没有营养的问题也没啥意义。
问题现象:经常远程不上,需要重启才能远程上,远程不上时查看云监控CPU或内存指标都是接近100%的利用率。
在 Linux 下我们通过 top 或者 htop 命令可以看到当前的 CPU 资源利用率,另外在一些监控工具中你可能也遇见过,那么它是如何计算的呢?在 Nodejs 中我们该如何实现?
一般来说对于需要大量cpu计算的进程,当前端压力越大时,CPU利用率越高。但对于I/O网络密集型的进程,即使请求很多,服务器的CPU也不一定很到,这时的服务瓶颈一般是在磁盘的I/O上。比较常见的就是,大文件频繁读写的cpu开销远小于小文件频繁读写的开销。因为在I/O吞吐量一定时,小文件的读写更加频繁,需要更多的cpu来处理I/O的中断。 在Linux/Unix下,CPU利用率分为用户态,系统态和空闲态,分别表示CPU处于用户态执行的时间,系统内核执行的时间,和空闲系统进程执行的时间。平时所说的CPU利用率是
在linux系统环境的测试开发过程中,我们常常需要评估系统性能,尤其在性能测试工作中,我们需要通过系统资源的监控,从而分析定位系统的性能瓶颈。
熊军(老熊) 云和恩墨西区总经理 Oracle ACED,ACOUG核心会员 PC Server发展到今天,在性能方面有着长足的进步。64位的CPU在数年前都已经进入到寻常的家用PC之中,更别说是更高端的PC Server;在Intel和AMD两大处理器巨头的努力下,x86 CPU在处理能力上不断提升;同时随着制造工艺的发展,在PC Server上能够安装的内存容量也越来越大,现在随处可见数十G内存的PC Server。正是硬件的发展,使得PC Server的处理能力越来越强大,性能越来越高。而在稳定性
来源 | https://juejin.cn/post/6948034657321484318
psutil是一个跨平台库能够轻松实现获取系统运行的进程和系统利用率(包括CPU、内存、磁盘、网络等)信息。它主要用来做系统监控,性能分析,进程管理。它实现了同等命令行工具提供的功能,如ps、top、lsof、netstat、ifconfig、who、df、kill、free、nice、ionice、iostat、iotop、uptime、pidof、tty、taskset、pmap等。目前支持32位和64位的Linux、Windows、OS X、FreeBSD和Sun Solaris等操作系统.
当您学会使用 eBPF 性能分析解锁详细洞察时,不可靠的数据将成为过去。了解如何细粒度且高效地监控 CPU、内存和网络数据。
时间片即CPU分配给各个程序的时间,每个线程被分配一个时间段,称作它的时间片,即该进程允许运行的时间,使各个程序从表面上看是同时进行的。如果在时 间片结束时进程还在运行,则CPU将被剥夺并分配给另一个进程。如果进程在时间片结束前阻塞或结束,则CPU当即进行切换。而不会造成CPU资源浪费。在 宏观上:我们可以同时打开多个应用程序,每个程序并行不悖,同时运行。但在微观上:由于只有一个CPU,一次只能处理程序要求的一部分,如何处理公平,一 种方法就是引入时间片,每个程序轮流执行。 分时操作系统是把CPU的时间划分
从Kepler的GP10架构开始,NVIDIA就引入了MPS(基于软件的多进程服务),这种技术在当时实际上是称为HyperQ ,允许多个 流(stream)或者CPU的进程同时向GPU发射Kernel函数,结合为一个单一应用程序的上下文在GPU上运行,从而实现更好的GPU利用率。在单个进程的任务处理,对GPU利用率不高的情况下是非常有用的。实际上,在Pascal架构出现之后的MPS可以认为是HyperQ的一种实现方式。 现在在Volta架构下面,NVIDIA又将MPS服务进行了基于硬件的优化。 MPS有哪些
在前面的文章中介绍过使用w命令或uptime命令来查看Linux系统的平均负载(Load avaerage),那么平均负载处于什么状态算是正常呢?如果要根据平均负载来判断系统的稳定性,又该如何界定?先来看一下基础知识。
对称多处理器结构 , 英文名称为 " Symmetrical Multi-Processing " , 简称 SMP ;
cpu scheduler负责调度两种资源:线程和中断 按优先级从高到低: 1)中断:设备告诉内核它们已经处理完成:如网卡发送完成了一个packet或是硬盘完成了一个io请求。 2)内核进程: 3)用户进程: ## 1. context switches:上下文切换 大多数的处理器在同一时刻只能运行一个进程,在多核处理器中,linux内核将每一个core当作一个独立的处理器。 一个内核可以同时运行50~50000个进程。如果只有一个c
进程(process)是程序实体运行的过程,是系统进行资源分配和调度的独立单位,或者说是一个程序在处理机上的一次执行活动。 区分一下进程和程序 ---- 1.0 程序是一个静态指令的集合;而进程是一
抛开一些操作系统,计算机原理不谈,说一个基本的理论(不用纠结是否严谨,只为好理解):一个CPU核心,单位时间内只能执行一个线程的指令 ** 那么理论上,我一个线程只需要不停的执行指令,就可以跑满一个核心的利用率。
SIP的第四期结束了,因为控制策略的丰富,早先的的压力测试结果已经无法反映在高并发和高压力下SIP的运行状况,因此需要重新作压力测试。跟在测试人员后面做了快一周的压力测试,压力测试的报告也正式出炉,本来也就算是告一段落,但第二天测试人员说要修改报告,由于这次作压力测试的同学是第一次作,有一个指标没有注意,因此需要修改几个测试结果。那个没有注意的指标就是load average,他和我一样开始只是注意了CPU,内存的使用状况,而没有太注意这个指标,这个指标与他们通常的限制(10左右)有差别。重新测试的结果由于这个指标被要求压低,最后的报告显然不如原来的好看。自己也没有深入过压力测试,但是觉得不搞明白对将来机器配置和扩容都会有影响,因此去问了DBA和SA,得到的结果相差很大,看来不得不自己去找找问题的根本所在了。
前言: 朋友遇到了load average偏高的问题,关于load average的解释,网上也是五花八门,有的说法甚至都有些不负责任。在这里详细分析一下load average。 分析: 1,l
抛开一些操作系统,计算机原理不谈,说一个基本的理论(不用纠结是否严谨,只为好理解):一个CPU核心,单位时间内只能执行一个线程的指令 那么理论上,我一个线程只需要不停的执行指令,就可以跑满一个核心的利用率。
一、背景 近日在客户系统运维中发现,有系统在定时脚本执行期间会将Linux系统CPU利用率跑满,导致其他服务受到影响,故查阅资料发现有大神写的CPU利用率限制程序。 地址:CPU Usage Limiter for Linux 根据此编写脚本,配合定时任务放置在服务器上,达到限制程序CPU情况,可根据自己系统CPU核心数进行参数配置,会记录CPU超过阀值的日志,可供后期进行查看分析。 二、脚本 GIT地址:cpulimit.sh #!/bin/bash # auth:kaliarch # func:sys
在 Linux 系统中的 /proc/stat 文件中存储了CPU 活动的信息,该文件中的所有值都是从系统启动开始累计到当前时刻。不同内核版本中该文件的格式可能不大一致,以下通过实例来说明数据该文件中各字段的含义。
抛开一些操作系统,计算机原理不谈,说一个基本的理论(不用纠结是否严谨,只为好理解):一个CPU核心,单位时间内只能执行一个线程的指令** 那么理论上,我一个线程只需要不停的执行指令,就可以跑满一个核心的利用率。
高并发也算是这几年的热门词汇了,尤其在互联网圈,开口不聊个高并发问题,都不好意思出门。高并发有那么邪乎吗?动不动就千万并发、亿级流量,听上去的确挺吓人。但仔细想想,这么大的并发与流量不都是通过路由器来的吗?
Redis是目前广为人知的一个内存数据库,在各个场景中都有着非常丰富的应用,前段时间Redis推出了6.0的版本,在新版本中采用了多线程模型。
本文中若有任何疏漏错误,有任何建议和意见,请回复内核月谈微信公众号,或通过 oliver.yang at linux.alibaba.com 反馈。
解决这个问题的关键是要找到Java代码的位置。下面分享一下排查思路,以CentOS为例,总结为4步。
身为一个运维开发人员,如果你不知道眼下当前服务器底层操作系统中正在发生什么,那就有点合眼摸象了。其实,你可以根据相应数据做出一定的推测,但是要做到这一点,就需要原始数据,并且数据要有一定的实时性。
本文介绍了作者常用的 4 个 Linux 监控工具,希望可以帮助读者提高生产力。
psutil(process and system utilities)是一个跨平台的库,github、官方文档
在当今的高科技环境下,生产环境服务器的性能问题可能是一个复杂且棘手的问题。当服务器变慢时,可能会对企业的运营产生重大影响,包括客户满意度下降,工作效率降低,甚至可能导致整个系统崩溃。为了解决这些问题,我们需要深入了解生产环境服务器变慢的原因,并掌握有效的诊断和处理方法。
Linux内核的DL调度器是一个全局EDF调度器,它主要针对有deadline限制的sporadic任务。注意:这些术语已经在本系列文章的第一部分中说明了,这里不再赘述。在这本文中,我们将一起来看看Linux DL调度器的细节以及如何使用它。另外,本文对应的英文原文是https://lwn.net/Articles/743946/,感谢lwn和Daniel Bristot de Oliveira的分享。
/proc/cpuinfo是可以获取系统CPU信息比如物理CPU的个数 每个CPU的物理核心数量 CPU的型号和主频等信息。
我们原先在服务器上想分析性能指标,需要执行一系列的linux命令。对于linux命令不熟悉的人来说,比较困难
作为数据科学、机器学习的工具,Linux有着非常广泛的应用场景。其完全开放、高度可定制化的属性,使得用户可以用非常低的成本搭建所需的工作环境,同时安装依赖的时候也非常方便,直接一条命令就安装好了。
原文链接:https://rumenz.com/rumenbiji/linux-cpu-100.html
目前市场上有许多开源监控工具可用于监控 Linux 系统的性能。当系统达到指定的阈值限制时,它可以发送电子邮件警报。它可以监视 CPU 利用率、内存利用率、交换利用率、磁盘空间利用率等所有内容。
领取专属 10元无门槛券
手把手带您无忧上云