本章我们从硬件底层开始,首先研究TLB机制以及如何设置。在此基础上分别研究裸机程序和操作系统下内存管理机制。
MIPS架构中,中断、异常、系统调用以及其它可以中断程序正常执行流的事件统称为异常(exception),统一由异常处理机制进行处理。
前面讲解的很多内容都很抽象,所以本次系列决定"接点地气",准备开始讲解大家熟悉的Activity了,为了让我以及大家更好的理解Activity,我决定本系列的课程主要分为4大流程和2大模块。 4大流程如下:
本系列是对 陈莉君 老师 Linux 内核分析与应用[1] 的学习与记录。讲的非常之好,推荐观看
内存管理子系统可能是linux内核中最为复杂的一个子系统,其支持的功能需求众多,如页面映射、页面分配、页面回收、页面交换、冷热页面、紧急页面、页面碎片管理、页面缓存、页面统计等,而且对性能也有很高的要求。本文从内存管理硬件架构、地址空间划分和内存管理软件架构三个方面入手,尝试对内存管理的软硬件架构做一些宏观上的分析总结。
目前主要的 CPU 虚拟化技术是 Intel 的 VT-x/VT-i 和 AMD 的 AMD-V 这两种技术。
甄建勇,高级架构师(某国际大厂),十年以上半导体从业经验。主要研究领域:CPU/GPU/NPU架构与微架构设计。
版权声明:本文为博主原创文章,转载请注明源地址。 https://blog.csdn.net/10km/article/details/83088803
下载并启动qemu镜像,配置qemu虚拟机中的网络。在这里下载qemu的mips镜像
交叉编译是为了在不同平台编译出其他平台的程序,比如在Linux编译出Windows程序,在Windows能编译出Linux程序,32位系统下编译出64位程序,今天介绍的gox就是其中一款交叉编译工具。
交叉编译器: http://ftp.loongnix.org/loongsonpi/pi_2/toolchain/
这是一套针对初学者的Linux二进制漏洞利用开发任务,目前这一套学习内容主要针对的是堆栈缓冲区溢出问题。
版权声明:本文为博主原创文章,转载请注明源地址。 https://blog.csdn.net/10km/article/details/80639076
Toochain即交叉编译工具链,是Linux Host机上用来编译和调试嵌入式设备程序的一系列工具的集合。ISVP中的Toolchain版本信息如下:
交叉编译是指在一台主机上为另一种不同架构或操作系统的目标平台生成可执行程序或库。在C++中,交叉编译通常用于在开发机器上编译目标平台的程序,例如在使用x86架构的开发机器上编译ARM架构的程序。
在虚拟内存中,页表是个映射表的概念, 即从进程能理解的线性地址(linear address)映射到存储器上的物理地址(phisical address).
据腾讯官网介绍,Linux QQ 目前支持x64(x86_64、amd64)、arm64(aarch64)、mips64(mips64el)三种架构;
可以看到qemu支持的架构有 arm、mips ,qemu-mips64el的状态是 enabled
1024的由来: 1024程序员节是广大程序员的共同节日。1024是2的十次方,二进制计数的基本计量单位之一。针对程序员经常周末加班与工作日熬夜的情况,部分互联网机构倡议每年的10月24日为1024程序员节,在这一天建议程序员拒绝加班,中国首届全球程序员节2017年在西安举办。 程序员就像是一个个1024,以最低调、踏实、核心的功能模块搭建起这个科技世界。1G=1024M,而1G与1级谐音,也有一级棒的意思。
SRS是一个单进程多协程的服务器,保持高并发同时还能利用ST协程避免异步回调的问题,这也导致新的平台需要移植ST,而且是汇编代码。 其实,移植ST比想象的要简单很多,最关键的就是实现setjmp/longjmp,也就是保存寄存器和恢复寄存器,所以步骤如下: 1.分析你的平台的寄存器使用,也就是函数调用规范。一般是由系统(Linux/OSX/Windows)和CPU(x86/ARM/MIPS)决定的。有个小工具打印这些信息,参考porting.c[1]。2.使用汇编实现寄存器的保存和恢复,不同系统的汇编语法有
通用操作系统,通常都会开启mmu来支持虚拟内存管理,而页表管理是在虚拟内存管理中尤为重要,本文主要以回答几个页表管理中关键性问题来解析Linux内核页表管理,看一看页表管理中那些鲜为人知的秘密。
本文旨在深入探讨Linux操作系统的虚拟内存管理机制。我们将从基本概念开始,逐步深入到内核级别的实现细节。为了达到这个目标,本文将结合理论讨论和实际的代码分析。我们希望通过这种方式,使读者对Linux虚拟内存管理有更深入的理解。
在用户的视角里,每个进程都有自己独立的地址空间,A进程的4GB和B进程4GB是完全独立不相关的,他们看到的都是操作系统虚拟出来的地址空间。但是呢,虚拟地址最终还是要落在实际内存的物理地址上进行操作的。操作系统就会通过页表的机制来实现进程的虚拟地址到物理地址的翻译工作。其中每一页的大小都是固定的。这一段我不想介绍的太过于详细,对这个概念不熟悉的同学回去翻一下操作系统的教材。
.NET 团队有一篇博客 改进多平台容器支持, 详细介绍了.NET 7 以上的平台可以轻松的使用Docker buildx 工具构建多平台的镜像。 buildx 是 Docker 官方提供的一个构建工具,它可以帮助用户快速、高效地构建 Docker 镜像,并支持多种平台的构建。使用 buildx,用户可以在单个命令中构建多种架构的镜像,例如 x86 和 ARM 架构,而无需手动操作多个构建命令。此外,buildx 还支持 Dockerfile 的多阶段构建和缓存,这可以大大提高镜像构建的效率和速度。
1. 准备下载相关的交叉编译器gcc (1)、aarch32架构的交叉编译器 因为系统是ubuntu 14-04的版本,可以直接使用安装的方式去安装aarch32架构的交叉编译器。也可以按照aarch64架构的方式去下载aarch32的交叉编译器,建议g++版本低一点,4.8.4左右。 sudo apt-get install g++-arm-linux-gnueabihf 执行命令成功后,使用 命令 arm-linux-gnueabihf-g++ -v 查看到安装的版本值,安装成功! 版本值显示如下图:
Error:Execution failed for task ‘:app:transformNativeLibsWithStripDebugSymbolForDebug’. > A problem occurred starting process ‘command ‘G:\sdk1\ndk-bundle\toolchains\mips64el-linux-android-4.9\prebuilt\windows-x86_64\bin\mips64el-linux-android-strip’’
操作系统用于处理内存访问异常的入口操作系统的核心任务是对系统资源的管理,而重中之重的是对CPU和内存的管理。为了使进程摆脱系统内存的制约,用户进程运行在虚拟内存之上,每个用户进程都拥有完整的虚拟地址空间,互不干涉。而实现虚拟内存的关键就在于建立虚拟地址(Virtual Address,VA)与物理地址(Physical Address,PA)之间的关系,因为无论如何数据终究要存储到物理内存中才能被记录下来。
本文介绍了地址空间和二级页表、Linux下的线程、线程的优缺点以及线程与进程的关系等概念。
在32bit中的Linux内核中一般采用3层映射模型,第1层是页面目录(PGD),第2层是页面中间目录(PMD),第3层才是页面映射表(PTE)。但在ARM32系统中只用到两层映射,因此在实际代码中就要3层映射模型中合并一层。在ARM32架构中,可以按段(section)来映射,这时采用单层映射模式。使用页面映射需要两层映射结构,页面的选择可以是64KB的大页面或4KB的小页面,如图2.4所示。Linux内核通常使用4KB大小的小页面。
对于没有启用物理地址扩展的32位系统,两级页表已经足够了。从本质上说Linux通过使“页上级目录”位和“页中间目录”位全为0,彻底取消了页上级目录和页中间目录字段。不过,页上级目录和页中间目录在指针序列中的位置被保留,以便同样的代码在32位系统和64位系统下都能使用。内核为页上级目录和页中间目录保留了一个位置,这是通过把它们的页目录项数设置为1,并把这两个目录项映射到页全局目录的一个合适的目录项而实现的。
1987年,微软公司和英特尔公司共同制定了SMB(Server Messages Block,服务器消息块)协议,旨在解决局域网内的文件或打印机等资源的共享问题。
是TP-Link WR940N后台的RCE, 手头上正好有一个TP-Link WR941N的设备,发现也存在相同的问题,但是CVE-2017-13772文章中给的EXP并不通用
大家在看内核代码时会经常看的以上术语,但在ARM的芯片手册中并没有用到这些术语,而是使用L1,L2,L3页表这种术语。
作者:Hcamael@知道创宇404实验室 之前看到了一个CVE, CVE-2017-13772 是TP-Link WR940N后台的RCE, 手头上正好有一个TP-Link WR941N的设备,发现也存在相同的问题,但是 CVE-2017-13772 文章中给的EXP并不通用 所以准备进行复现和exp的修改,折腾了将近4天,记录下过程和遇到的坑 第一次研究mips指令的RCE,之前只学了intel指令集的pwn,所以进度挺慢的 Day 1 第一天当然是配环境了,该路由器本身在默认情况下是不提供shell的
操作系统确实是比较难啃的一门课,至少我认为比计算机网络难太多了,但它的重要性就不用我多说了。
1.解压 runc 源码至 ~/go/src/github.com/opencontainers 目录;
主要是IDA,IDA的安装就不用多说了。这里说明的是辅助插件MIPSROP这些插件的安装,书里面给的插件的链接已经无法支持IDA 6.7以后的版本,主要是由于版本以后的API有更新,具体原因IDA的官方博客也给出了说明,查看了issue以后,发现有大佬已经写了能够支持IDA7.0的插件,安装的命令照着readme做即可顺利的装上。
干货福利,第一时间送达! 在嵌入式项目预研前期阶段,我们常常需要对某个平台进行资源和性能方面的评估,以下是最常见的一些评估指标:
前段时间得知龙芯团队成功移植并开源了 CoreCLR ,忙完事情后,快乐地捣鼓一下这个东西。近年来国产操作系统、芯片等的到很大的关注和快速发展,我们开发的软件适配国产的机器环境就尤为重要,未来 IT 行业的变化会影响到我们的饭碗。
在 x86 系统中,内存管理中的分页机制是非常重要的,在Linux操作系统相关的各种书籍中,这部分内容也是重笔浓彩。
作者:Cheetah老师一直从业于半导体行业,他曾为U-boot社区和Linux内核社区提交过若干补丁。目前主要从事Linux相关系统软件开发工作,负责Soc芯片BringUp及系统软件开发,喜欢阅读内核源代码,在不断的学习和工作中深入理解内存管理,进程调度,文件系统,设备驱动等内核子系统。
基于ARMv8-A架构的处理器最大可以支持到48根地址线,也就是寻址2的48次方的虚拟地址空间,即虚拟地址空间范围为0x0000_0000_0000_0000~0x0000_FFFF_FFFF_FFFF,共256TB。
本文涉及的硬件平台是X86,如果是其他平台的话,如ARM,是会使用到MMU,但是没有使用到分段机制; 最近在学习Linux内核,读到《深入理解Linux内核》的内存寻址一章。原本以为自己对分段分页机制已经理解了,结果发现其实是一知半解。于是,查找了很多资料,最终理顺了内存寻址的知识。现在把我的理解记录下来,希望对内核学习者有一定帮助,也希望大家指出错误之处。
上一篇文章分了一下ARM系统的路由器漏洞,本次打算尝试一下MIPS系统,于是选了最近DLink路由器的漏洞CVE-2019-17621作为目标。同样一路走来各种踩坑不断,“纸上得来终觉浅,绝知此事要躬行”,对整个过程做一下梳理。
熊军(老熊) 云和恩墨西区总经理 Oracle ACED,ACOUG核心会员 PC Server发展到今天,在性能方面有着长足的进步。64位的CPU在数年前都已经进入到寻常的家用PC之中,更别说是更高端的PC Server;在Intel和AMD两大处理器巨头的努力下,x86 CPU在处理能力上不断提升;同时随着制造工艺的发展,在PC Server上能够安装的内存容量也越来越大,现在随处可见数十G内存的PC Server。正是硬件的发展,使得PC Server的处理能力越来越强大,性能越来越高。而在稳定性
最近,一个来自福州的男生突然火了,原因是知乎上一个热帖《清华大学计算机专业本科的这位同学是什么水平?》:
直接摘抄自己《揭秘家用路由器0day漏洞挖掘技术》,网上查了一下也没有找到令人满意的QEMU的使用说明,就采用这本书上的介绍。如果后期能够找到比较满意的QEMU的使用方法的说明,再添加上来。
近日,知乎上有条帖子火了,有人提问:清华大学计算机专业本科这位在「自己写的 CPU 上运行自己写的操作系统」的同学是什么水平?
领取专属 10元无门槛券
手把手带您无忧上云