x86 CPU采用了段页式地址映射模型。进程代码中的地址为逻辑地址,经过段页式地址映射后,才真正访问物理内存。
ARM64架构处理器采用48位物理寻址机制,最大可以寻找到256TB的物理地址空间。对于目前的应用来说已经足够了,不需要扩展到64位的物理地址寻址。虚拟地址也同样最大支持48位支持,所以在处理器的架构设计上,把虚拟地址空间划分为两个空间,每个空间最大支持256TB。Linux内核在大多数体系结构中都把两个地址空间划分为用户空间和内核空间。
在 Linux 内核中 , MMU 内存管理单元 , 主要作用是 将 " 虚拟地址 " 映射到 真实的 " 物理地址 " 中 ,
我们接着看linux初始化内存的下半部分,等内存初始化后就可以进入真正的内存管理了,初始化我总结了一下,大体分为三步:
在内存管理的上下文中, 初始化(initialization)可以有多种含义. 在许多CPU上, 必须显式设置适用于Linux内核的内存模型. 例如在x86_32上需要切换到保护模式, 然后内核才能检测到可用内存和寄存器.
在 《漫画解说内存映射》一文中介绍过 虚拟内存 与 物理内存 映射的原理与过程,虚拟内存与物理内存进行映射的过程被称为 内存映射。内存映射是硬件(内存管理单元)级别的功能,必须按照硬件的规范设置好内存映射的关系,进程才能正常运行。
在一些物理内存为8g的服务器上,主要运行一个Java服务,系统内存分配如下:Java服务的JVM堆大小设置为6g,一个监控进程占用大约 600m,Linux自身使用大约800m。
方案:3个核(Linux或Debian) + 1个核(RT-Thread) Debian-AMP工程
内存管理子系统可能是linux内核中最为复杂的一个子系统,其支持的功能需求众多,如页面映射、页面分配、页面回收、页面交换、冷热页面、紧急页面、页面碎片管理、页面缓存、页面统计等,而且对性能也有很高的要求。本文从内存管理硬件架构、地址空间划分和内存管理软件架构三个方面入手,尝试对内存管理的软硬件架构做一些宏观上的分析总结。
" ARM64 架构 " 中 , Linux 系统的 " 内核虚拟地址 “ 与 ” 用户虚拟地址 " 是等同的 ;
过去,CPU的地址总线只有32位, 32的地址总线无论是从逻辑上还是从物理上都只能描述4G的地址空间(232=4Gbit),在物理上理论上最多拥有4G内存(除了IO地址空间,实际内存容量小于4G),逻辑空间也只能描述4G的线性地址空间。
操作系统用于处理内存访问异常的入口操作系统的核心任务是对系统资源的管理,而重中之重的是对CPU和内存的管理。为了使进程摆脱系统内存的制约,用户进程运行在虚拟内存之上,每个用户进程都拥有完整的虚拟地址空间,互不干涉。而实现虚拟内存的关键就在于建立虚拟地址(Virtual Address,VA)与物理地址(Physical Address,PA)之间的关系,因为无论如何数据终究要存储到物理内存中才能被记录下来。
1.1 下载Centos7( CentOS-7.0-1406-x86_64-DVD.iso )的ISO安装文件,地址:https://www.centos.org/download/,选择DVD ISO或者EVERYTHING ISO 。
" 内存区域 " 的类型 在 Linux 内核中使用 enum zone_type 枚举类型进行描述 , zone_type 枚举定义在 Linux 内核源码的 linux-4.12\include\linux\mmzone.h#293 位置 ;
在虚拟内存中,页表是个映射表的概念, 即从进程能理解的线性地址(linear address)映射到存储器上的物理地址(phisical address).
内核、shell、文件系统和应用程序。内核、shell和文件系统一起形成了基本的操作系统结构,它们使得用户可以运行程序、管理文件并使用系统。部分层次结构如图1-1所示。
现在你可能还觉得node、zone、伙伴系统、slab这些东东还有那么一点点陌生。别怕,接下来我们结合动手观察,把它们逐个来展开细说。(下面的讨论都基于Linux 3.10.0版本)
云计算介绍 云计算是一种按使用量付费的模式,这种模式提供可用的、便捷的、按需的网络访问,进入可配置的计算资源共享池,(资源包括网络、服务器、存储、应用软件、服务),这些资源能够被快速提供,需要投入很少的管理工作,或与服务供应商进行很少的交互。 1)云计算之前的使用模式 IDC 托管 IDC 租用 虚拟主机(买空间) VPS:虚拟专用主机 2)传统数据中心面临的问题 资源使用率低 资源分配不均 自动化能力差 3)云计算的优势 云计算是一种使用模式,不是一种技术 云计算的使用方式:通过网络访问 云计算的优势:弹
什么是Linux swap space呢?我们先来看看下面两段关于Linux swap space的英文介绍资料:
用户空间(User Space) :用户空间又包括用户的应用程序(User Applications)、C 库(C Library) 。
操作系统确实是比较难啃的一门课,至少我认为比计算机网络难太多了,但它的重要性就不用我多说了。
2.堆内存划分为一个个arena空间,arena的初始地址记录在arenaBaseOffset中,在amd64架构的linux中,其值默认为64M,每个arena中有8192个page,每个page有8KB。
在选择好系统镜像之后,如果选择安装程序光盘映像文件,会自动安装系统,虽然方便,但是会安装太多的服务和程序,并且会自动分区,所有我们选择稍后安装系统来手动的安装系统。
内存管理,相比大家都听过。但是内存管理到底是做什么呢?这就得从计算机刚出来的时候说起。计算机刚出来的时候内存资源很紧张,只有几十K,后来慢慢的到几百K,到周后来的512M,再到现在的几个G。真是因为内存资源的不足,在计算机的整个过程中衍生出各种各样的内存管理方法。
对于 C/C++ 来说,程序中的内存包括这几部分:栈区、堆区、静态区 等,其中各个部分功能都不相同,比如函数的栈帧位于 栈区,动态申请的空间位于 堆区,全局变量和常量位于 静态区 ,区域划分的意义是为了更好的使用和管理空间,那么 真实物理空间 也是如此划分吗?多进程运行 时,又是如何区分空间的呢?写时拷贝 机制原理是什么?本文将对这些问题进行解答
谈到让Go程序监控自己进程的资源使用情况,那么就让我们先来谈一谈有哪些指标是需要监控的,一般谈论进程的指标最常见的就是进程的内存占用率、CPU占用率、创建的线程数。因为Go语言又在线程之上自己维护了Goroutine,所以针对Go进程的资源指标还需要加一个创建的Goroutine数量。
一、内存管理架构 二、虚拟地址空间布局架构 三、物理内存体系架构 四、内存结构 五、内存模型 六、虚拟地址和物理地址的转换 七、内存映射原理分析 一、内存管理架构 内存管理子系统架构可以分为:用户空间、内核空间及硬件部分3个层面,具体结构如下所示:1、用户空间:应用程序使用malloc()申请内存资源/free()释放内存资源。2、内核空间:内核总是驻留在内存中,是操作系统的一部分。内核空间为内核保留,不允许应用程序读写该区域的内容或直接调用内核代码定义的函数。3、硬件:处理器包含一个内存管理单元(Memo
该文章介绍了如何通过 pmap 命令查看进程的虚拟地址空间使用情况,包括起始地址、大小、实际使用内存、脏页大小、权限、偏移、设备和映射文件等。通过分析这些信息,可以更好地了解程序运行时的内存使用情况,并找出潜在的内存泄漏、内存碎片等问题。
http://bbs.chinaunix.net/thread-2083672-1-1.html
Linux内核内存管理的一项重要工作就是如何在频繁申请释放内存的情况下,避免碎片的产生。Linux采用伙伴系统解决外部碎片的问题,采用slab解决内部碎片的问题,在这里我们先讨论外部碎片问题。避免外部碎片的方法有两种:一种是之前介绍过的利用非连续内存的分配;另外一种则是用一种有效的方法来监视内存,保证在内核只要申请一小块内存的情况下,不会从大块的连续空闲内存中截取一段过来,从而保证了大块内存的连续性和完整性。显然,前者不能成为解决问题的普遍方法,一来用来映射非连续内存线性地址空间有限,二来每次映射都要改写内核的页表,进而就要刷新TLB,这使得分配的速度大打折扣,这对于要频繁申请内存的内核显然是无法忍受的。因此Linux采用后者来解决外部碎片的问题,也就是著名的伙伴系统。
内存管理在任何的编程语言里都是重头戏,Golang 也不例外。Go 借鉴了 Google 的 TCMalloc,它是高性能的用于 c++ 的内存分配器。其核心思想是内存池 + 多级对象管理 ,能加快分配速度,降低资源竞争。
一个程序内存分配: 下图是APUE中的一个典型C内存空间分布图(虚拟内存) 例如: #include int g1=0, g2=0, g3=0; int max(int i) { int m1
毋庸置疑,虚拟内存是操作系统中最重要的概念之一。我想主要是由于内存的重要”战略地位”。CPU太快,但容量小且功能单一,其他 I/O 硬件支持各种花式功能,可是相对于 CPU,它们又太慢。于是它们之间就需要一种润滑剂来作为缓冲,这就是内存大显身手的地方。
毋庸置疑,虚拟内存绝对是操作系统中最重要的概念之一。我想主要是由于内存的重要”战略地位”。CPU太快,但容量小且功能单一,其他 I/O 硬件支持各种花式功能,可是相对于 CPU,它们又太慢。于是它们之间就需要一种润滑剂来作为缓冲,这就是内存大显身手的地方。
很多小伙伴在学操作系统的时候,学习到内存管理的部分时,都会接触到分段内存管理、分页内存管理。
为了支持NUMA模型,也即CPU对不同内存单元的访问时间可能不同,此时系统的物理内存被划分为几个节点(node), 一个node对应一个内存簇bank,即每个内存簇被认为是一个节点
在上篇文章 《深入理解 Linux 虚拟内存管理》 中,笔者分别从进程用户态和内核态的角度详细深入地为大家介绍了 Linux 内核如何对进程虚拟内存空间进行布局以及管理的相关实现。在我们深入理解了虚拟内存之后,那么何不顺带着也探秘一下物理内存的管理呢?
这里也能解释为什么对于常量字符串类型为什么不能修改了,因为要修改的时候会从虚拟地址转化成物理地址,然后检查权限是否可以修改等等。
该文章介绍了如何在不使用挂载的情况下,将硬盘分区格式化为ext4文件系统。同时,文章也探讨了如何将硬盘挂载到Linux系统中,并总结了一些常见的问题和解决方法。
在《小许code:Go内存管理和分配策略》这篇分享中我们了解到Go是怎么对内存进行管理和分配的,那么用户的程序进程在linux系统中的内存布局是什么样的呢?我们先了解一下基础知识,然后再看Go的内存对齐。
Linux内核命名格式为 “R.X.Y-Z”,其中R、X、Y、Z命名意义如下: 3.10.0-862.el7.x86_64 数字R:目前发布的内核主版本,到目前为止有4个大版本更新 数字X:次版本号,奇数为开发版,偶数为稳定版 数字Y:错误修补的次数,无论在内核增加安全补丁、修复Bug、实现新的特性或者驱动时都会改变 数字Z:表示这个当前版本的第862次微调patch
前不久组内又有一次我比较期待的分享:“Linux 的虚拟内存”。是某天晚上加班时,我们讨论虚拟内存的概念时,leader 发现几位同事对虚拟内存认识不清后,特意给这位同学挑选的主题。
前不久组内又有一次我比较期待的分享:”Linux 的虚拟内存”。是某天晚上加班时,我们讨论虚拟内存的概念时,leader 发现几位同事对虚拟内存认识不清后,特意给这位同学挑选的主题(笑)。
早于windows 2008 的windows系统,2010年以前的linux系统,第一个分区的扇区是磁盘第63扇区,并且扇区尺寸是是512byte,这个是历史的原因,硬盘必须将cylinder / head / sector (CHS) 信息报告给BIOS,这个信息在现代的操作系统是无意义的,但是磁盘依然报告给bios每个磁盘轨道有63个扇区,因此操作系统依然将第一个分区的开始位置放置到第一个磁盘轨道上,在第63个扇区开始。
当你登录到linux服务器处理性能问题的时候,最开始的一分钟你会做些啥? Netflix有大量的EC2云服务主机,也有很多检测和排查性能问题的工具。比如像云监控工具Atlas和实例分析工具Vector。这些工具帮我们解决了大部分性能问题,但有时候我们仍需要登录到服务器上运行一些标准的Linux性能排查工具。
无论是 windows 系统还是 linux 操作系统,在硬盘上都有一块虚拟内存的空间。 无论你使用的是哪个系统,都存在一个问题,那就是到底虚拟内存的空间需要多大呢?虚拟内存又是什么呢? 本文就来详细介绍一下。
作者简介: 程磊,一线码农,在某手机公司担任系统开发工程师,日常喜欢研究内核基本原理。 1.1 内存管理的意义 1.2 原始内存管理 1.3 分段内存管理 1.4 分页内存管理 1.5 内存管理的目标 1.6 Linux内存管理体系 2.1 物理内存节点 2.2 物理内存区域 2.3 物理内存页面 2.4 物理内存模型 2.5 三级区划关系 3.1 Buddy System 3.1.1 伙伴系统的内存来源 3.1.2 伙伴系统的管理数据结构 3.1.3 伙伴系统的算法逻辑 3.1.4 伙伴系统的接口 3.1
linus 林纳斯 赫尔辛基大学 在自己的笔记本上安上自己写的操作系统 基于Linux内核
领取专属 10元无门槛券
手把手带您无忧上云