Raspberry Pi 内核Linux代码存储在 GitHub 中,可以在github.com/raspberrypi/linux上查看。
1. 建立Uboot的SI工程 1.1首先给uboot打上补丁,然后来生成压缩文件
本文介绍了如何通过修改配置文件、编译内核、创建内核工程、烧写内核到开发板、运行内核、分析内核日志、输出内核转储、调试内核、使用内核调试器等工具和方法,来分析和解决内核问题。
分析makefile从顶层开始,顺藤摸瓜的分析下去,会涉及到所有的makefile文件。各级子目下的makefile完成的动作obj -y += obj -m += make uImage时,uImage在arch/arm/makefile中,顶层makefile中一定包含了底层的makefile。
NXP 会从linux内核官网下载某个版本,然后将其移植到自己的 CPU上,测试成功后就会将其开放给NXP的CPU开发者。开发者下载 NXP 提供的 Linux 内核,然后将其移植到自己的产品上。
我们交叉编译Linux的时候可能需要添加新的头文件,这个头文件放在哪里。编译应用程序和内核程序不太一样,分别说。
目标: (1)创建Source Insight 工程,方便后面分析如何启动内核的 (2)分析uboot传递参数,链接脚本如何进入stext的 (3) 分析stext函数如何启动内核: (3.1
FFmpeg是音视频领域绕不过去的开源库,编译FFmpeg是音视频开发的基本功,FFmpeg就像一个音视频开源框架,很多的开源库都像插件一样作为FFmpeg的子模块,例如openssl、x264、x265、fdk-aac等等库都可以通过插件的形式编译进FFmpeg开源项目中。本文主要的目的是介绍一下FFmpeg的编译过程,以及如何将这些插件编译进FFmpeg中。
注意:使用我们提供的Ubuntu映象文件时,请按照我们的目录结构,手动设置交叉编译工具链以及编译的架构环境变量配置,(建议配置为永久生效),这里我们提供了两种交叉编译工具链,分别是buildroot构建生成的8.4以及yocto生成的9.3工具链,开发板系统默认安装的系统使用的是通过yocto编译构建,所以如果只想针对于文件系统应用做开发或者编译内核uboot等操作,建议只使用yocto的交叉编译工具链。
之前的文章:《一次搞定交叉编译》 给大家讲了如何安装交叉编译工具链,搭建交叉编译环境。
大家好,又见面了,我是你们的朋友全栈君。makefile menuconfig过程讲解
因为google在 NDK R19C中把GCC删除了。本来想着能不能配置出用clang编译ffmpeg,可是折腾了半天还是不行,于是还是用gcc吧。。支持gcc版本的最高的ndk是 NDK R17C,需要下载ndk r17c的开发包。另外最新的x264和ffmpeg代码需要最低 android-23的编译。也就是最低android6.0。因为有个 cabs()函数,只有android6.0才有。基本注意的就这两个方面。1,需要ndk r17c. 2,最低需要定义android-23。 下面是编译shell. 系统是centos7.0 第一个shell脚本是生成交叉编译toolchain
在现代计算机系统中,X86和ARM64是两种常见的处理器架构。为了满足不同架构的需求,Docker镜像也需要支持双架构编包形式。本文将介绍Docker镜像双架构编包统一的实践
OpenSSL 是开源密码库 , 其中封装了常用的 密码算法 , 常用密钥 , 证书封装管理 , SSL 协议 ;
简单地说,就是程序的编译的环境和它的运行的环境不一样。即在一个平台上生成另一个平台上的可执行代码。交叉编译的概念主要和嵌入式开发有关。
陪伴了我 3 年的 Mac 在几个月前迎来了它的退休时刻,我将其置换成了公司新发的 Mac M1。对电子产品并不太感冒的我,并没有意识到 M1 是 ARM 架构的(除了个别软件的安装异常之外),显然,Mac M1 做地是不错的,我并没有太多吐槽它的机会。这也是我第一次近距离接触 ARM 架构的机会。
模块在加载时,会调用module_alloc()来申请一块内存来存放模块的内容,需要的大小如下:
参考资料: [google官方资料] 官方是最权威的,但会有细节缺失。 [如何下载编译android内核] 可以参考别人的动手实践,弥补缺失的细节。
CoM-iMX6UL(L) 是一款兼容 i.MX6UL(L)-x(X=Y0/1/2 三个版本)的高性能、低功耗工业级核心板,主要用于各种工业级、商业级的应用控制终端数据采集和处理、智能物流数据终端、数据中继器、新能源充电桩控制器和计费系统、车载终端数据采集和处理,是 NXF的 i.MX6UL(L)系列产品的一员。
飞凌嵌入式推出的OKT507-C作为一款广受欢迎的开发板拥有丰富的功能接口,而实际上OKT507-C开发板的CPU引脚资源是比较紧缺的,那么它究竟是如何提供如此丰富的接口资源的呢?答案就是IO扩展芯片——TCA6424A。
在工作和生活中,我们可能经常需要将某个程序跑在不同的 CPU 架构上,比如让某些不可描述的软件运行在树莓派或嵌入式路由器设备上。特别是 Docker 席卷全球之后,我们可以轻松地在 ARM 设备上通过容器部署各种好玩的应用,而不用在意各种系统的差异性。
为了能更好的学习和运用ffmpeg, 建议下载ffmpeg源码自己编译.这里的编译方法基于ubuntu16.04环境.直接按照编译FFmpeg来做可能会碰到一些错误, 我将自己编译碰到的错误记录在最后面. 我自己编译的工程已经传到github上 https://github.com/yizhongliu/ffmpegForAndroid
最近我发现有个趋势哈,就是ARM server越来越多,但是ARM好像不像x64平台那么好识别,总是有各种各样的arm识别不了。如果SRS能出ARM的docker镜像,那会比较容易跑起来。 SRS已经支持了多CPU架构的docker镜像,如下图所示: 下面是用法和技术背景。 Usage 现在SRS支持了多个CPU架构,参考ossrs/srs[1]: • linux/amd64 这就是x86_64架构,Intel的64位服务器,目前主要的Linux服务器都是这种类型,无论任何操作系统只要是这个芯片都可以用
在计算机系统中,CPU的功能是执行程序,总结起来就是我们在教科书上学到的:取指、译码、执行。那么问题来了,如果没有程序要执行,CPU要怎么办?也许您会说,停掉就是了啊。确实,是要停掉,但何时停、怎么停,却要仔细斟酌,因为实际的软硬件环境是非常复杂的。
Linux ubuntu 4.4.0-142-generic #168~14.04.1-Ubuntu SMP Sat Jan 19 11:26:28 UTC 2019 x86_64 x86_64 x86_64 GNU/Linux
1 2,021 views A+ 所属分类:技术 我是在ubuntu14.04上使用交叉编译工具链编译arm 64位版busybox 第一步:在ubuntu上安装交叉编译链。 下载,解压,配置环境变量(PATH)。。。 第二步:到官网上下载busybox,解压 wget http://busybox.net/downloads/busybox-2.23.tar.bz2 tar -xjf busybox-2.23.tar.bz2 cd busybox-2.23/ 第三步:配
以下是基于fl2440开发板子上的内核移植实验总结 1. 解码内核源码包 2. 修改makefile中的arch和交叉工具链 3. ARCH ?=
今天尝试安装龙芯版 Linux,本来希望能安装 Debian 版,但只找到一些文档(https://wiki.debian.org/LoongArch),没找到可安装版的 ISO。
本文讲述了如何编译uboot并进行配置,对编译过程中遇到的问题进行解决,此外还对uboot的结构进行了简介
Linux 内核源码 linux-4.12\mm\memblock.c#34 位置 , 定义了 struct memblock 类型的变量 , 在该结构体赋值时 , .bottom_up = false 将 bottom_up 设置为了 false , 表示内存从 高地址向下分配 ;
SyterKit 是一个纯裸机框架,用于 TinyVision 或者其他 v851se/v851s/v851s3/v853 等芯片的开发板,SyterKit 使用 CMake 作为构建系统构建,支持多种应用与多种外设驱动。同时 SyterKit 也具有启动引导的功能,可以替代 U-Boot 实现快速启动
作者: 付汉杰 hankf@xilinx.com hankf@amd.com 测试环境: Vivado/PetaLinux 2021.2, Linux 5.10.0,VCK190
交叉编译其实是相对于本地编译(native build)来说的,我相信大家最开始学习 C/C++ 这些语言的时候,都是在电脑上写程序,然后在电脑上编译生成可执行文件,最后在电脑上运行。程序的编辑——》编译——》运行,整个过程都是在一台 X86 电脑上。
这两天在友善的tiny210的实验板上移植了linux内核,正好和大家分享,同时也算是做个记录吧!首先介绍一下开发环境吧,这个在做移植的时候还是挺重要的。
使用./build.sh -h kernel查看kernel的详细编译命令如下所示。
linux作为一款流行的嵌入式系统,目前已经有多种架构的MCU支持Linux移植,arm64就是其中一种。今天在这里想做一个笔记,记录一下完整的arm64移植过程。
本篇记录下本地搭建QEMU环境,运行linux 仿真环境,这样就可以运行自己编译或修改的内核了。
该文介绍了交叉编译工具链的使用,包括arm-linux-gnueabi-gcc、arm-linux-gnueabihf-gcc、arm-none-eabi-gcc、arm-none-linux-gnueabi-gcc、arm-none-linux-gnueabihf-gcc、qoriq-elf-gcc等工具的使用方法。
请按前面第七章使用 GIT 下载源码、使用 repo 下载工具链,并配置了交叉编译工具链。
NXP官方linux仓库地址为:https://github.com/Freescale/linux-fslc/tree/5.4-2.1.x-imx。
Linux内核(英语:Linux kernel)是一种开源的类Unix操作系统宏内核。整个Linux操作系统家族基于 该内核部署在传统计算机平台(如个人计算机和服务器,以Linux发行版的形式)和各种嵌入式平台,如路由器、无线接入点、专用小交换机、机顶盒、FTA接收器、智能电视、数字视频录像机、网络附加存储(NAS)等。工作于平板电脑、智能手机及智能手表的Android操作系统,它的底层操作系统也是Linux。尽管在桌面计算机的占用率较低,但基于Linux的操作系统统治了几乎从移动设备到主机的其他全部领域。实际Linux的发行版Ubuntu,其易用性也逐渐接近Windows。
近期刚好用到FFmpeg来处理视频编码,由于网上各种版本的so库大部分都32位的,所以打算自己来编译32位和64位的库,我之前有写编译32位的库https://cloud.tencent.com/developer/article/1661468里面有关于ndk和32位的相关配置。今天主要是总结一下FFmpeg的64位的动态库编译。
OpenHarmony OS 2.0 发布时,标准系统只支持 Hi3516DV300 一种硬件平台,而 Android、IOS 均提供了模拟器供开发人员使用。这也可以理解,毕竟华为长期以来都是设备供应商,专长是硬件,在软件开发方面缺少底蕴。鸿蒙应用开发提供了模拟器,但那是真机模拟器,需要接入到华为的开发平台才能使用。
经过若干天的反复测试,搜索。终于成功利用 Qemu 在 u-boot 下引导 ARM Linux 4.7.3 内核。如下详细解释整个构建过程。
关注ARM平台上timer driver(clocksource chip driver和clockevent chip driver)的驱动工程师应该会注意到timer硬件的演化过程。在单核时代,各个SOC vendor厂商购买ARM core的IP,然后自己设计SOC上的peripherals,这里面就包括了timer的硬件。由于没有统一的标准,各个厂商的设计各不相同,这给驱动工程师带来了工作量。然而,如果仅仅是工作量的话就还好,实际上,不仅仅如此。linux的时间子系统要求硬件timer提供下面两种能力:一是free running的counter,此外需要能够在指定的counter值上产生中断的能力。有些硬件厂商会考虑到软件的需求(例如:PXA270的timer硬件),但是有些硬件厂商做的就不够,例如:S3C2451的timer硬件。我们在写PXA270的timer硬件驱动的时候是毫无压力的,而在写S3C2451的timer的驱动的时候,最大的愿望就是把三星的HW timer的设计人员拉出来打一顿。
本文总结了通过分析Linux内核编译过程,特别是vmlinux文件的生成过程,以及分析uImage和zImage的生成方式,深入了解了Linux内核编译的底层原理和过程,对于实际参与Linux内核开发和推广有很大帮助。
本篇文章主要讲解嵌入式板卡中Linux系统是如何正确测试、使用的,其中内容包含有U-Boot编译、U-Boot命令和环境变量说明、Linux内核编译、xtra驱动编译、系统信息查询、程序开机自启动说明、NFS使用说明、TFTP使用说明、TFTP + NFS的系统启动测试说明、inux设备驱动说明等,其中案例源码部分公开。
领取专属 10元无门槛券
手把手带您无忧上云