信号量的概念参见这里。 与消息队列和共享内存一样,信号量集也有自己的数据结构: struct semid_ds { struct ipc_perm sem_perm; /* Ownership a
我们使用过windows的都知道,当一个程序被卡死的时候不管怎样都没反应,这样我们就可以打开任务管理器直接强制性的结束这个进程,这个方法的实现就是和Linux上通过生成信号和捕获信号来实现相似的,运行过程中进程捕获到这些信号做出相应的操作使最终被终止。
管道可用于具有亲缘关系进程间的通信,有名管道除了具有管道所具有的功能外,它还允许无亲缘关系进程间的通信。
除了原子操作,中断屏蔽,自旋锁以及自旋锁的衍生锁之外,在Linux内核中还存在着一些其他同步互斥的手段。
如果需要多个进程合作来完成某个任务,那个可能会存在资源争用或者其他一些意想不到的问题,这个时候,就需要通过实现进程同步来防止问题的产生。
Semaphore概述 信号量:它是不同进程或者一个给定进程内部不同线程间同步的机制 二值信号量:值为0或者1,与互斥锁类似,资源可用时,值为1,不可用时,值为0 计数信号灯:值在0到n之间。用来统计资源,其值代表可用资源数 等待操作:等待信号灯的值变为大于0,然后将其减1;而释放操作则相反,用来唤醒等待资源的进程或者线程 System V 信号灯(进程同步):是一个或者多个信号灯的一个集合。其中的每一个都是单独的计数信号灯。而Posix信号灯(线程同步)指的是单个计数信号灯 System V 信号灯由内核
在多年前,linux还没有支持对称多处理器SMP的时候,避免并发数据访问相对简单。
信号量,或称信号灯,其原理是一种数据操作锁的概念,本身不具备数据交换的功能,它负责协调各个进程,保证保证两个或多个关键代码段不被并发调用,确保公共资源的合理使用。信号量分为单值和多值两种。
在进程通信应用中会用到共享内存,这就涉及到了IPC,与IPC相关的命令包括:ipcs、ipcrm(释放IPC)。IPCS命令是Linux下显示进程间通信设施状态的工具。我们知道,系统进行进程间通信(IPC)的时候,可用的方式包括信号量、共享内存、消息队列、管道、信号(signal)、套接字等形式[2]。使用IPCS可以查看共享内存、信号量、消息队列的状态。
本文介绍了Linux信号量、POSIX信号量、Linux条件变量和Linux线程同步基本概念,并通过代码示例展示了如何使用这些技术进行线程同步。
每个进程的用户地址空间都是独立的,一般而言是不能互相访问的,但内核空间是每个进程都共享的, 所以进程之间要通信必须通过内核。
想必各位读者在看了昨天的文章分享之后,大概对线程有了一个比较清楚的认识了,但是昨天讲的东西过于纯理论化,所以在昨天的基础上,今天我们就来进行实战演练,做到活学活用,废话不多说,直接开干吧。
前言:非常早之前就接触过同步这个概念了,可是一直都非常模糊。没有深入地学习了解过,最近有时间了,就花时间研习了一下《linux内核标准教程》和《深入linux设备驱动程序内核机制》这两本书的相关章节。趁刚看完,就把相关的内容总结一下。
UNIX/Linux 是多任务的操作系统,通过多个进程分别处理不同事务来实现,如果多个进程要进行协同工作或者争用同一个资源时,互相之间的通讯就很有必要了
本文主要分享一个Cache一致性踩内存问题的定位过程,涉及到的知识点包括:backtrace、内存分析、efence、wrap系统函数、硬件watchpoint、DMA、Cache一致性等。
信号量(semaphore)本质上是一个计数器,用于多进程对共享数据对象的读取,它和管道有所不同,它不以传送数据为主要目的,它主要是用来保护共享资源(信号量也属于临界资源),使得资源在一个时刻只有一个进程独享。 在信号量进行PV操作时都为原子操作(因为它需要保护临界资源)。
在上一篇文章中,我们探讨了进程间通信的三种常见机制:管道、消息队列和共享内存。我们了解到,这些机制各有其特点和适用场景,可以根据实际需求选择合适的机制进行进程间通信。然而,进程间通信并不仅限于这三种方式。
函数原型:int semop(int semid, struct sembuf *sops, unsigned nsops);
本文主要介绍进程间通信(IPC,Inter Process Communication)的一些方式,包括:
综述 在上一篇介绍了linux驱动的调试方法,这一篇介绍一下在驱动编程中会遇到的并发和竟态以及如何处理并发和竞争。 首先什么是并发与竟态呢?并发(concurrency)指的是多个执行单元同时、并行被执行。而并发的执行单元对共享资源(硬件资源和软件上的全局、静态变量)的访问则容易导致竞态(race conditions)。可能导致并发和竟态的情况有: SMP(Symmetric Multi-Processing),对称多处理结构。SMP是一种紧耦合、共享存储的系统模型,它的特点是多个CPU使用共同的系统总线
初学操作系统的时候,我就一直懵逼,为啥进程同步与互斥机制里有信号量机制,进程通信里又有信号量机制,然后你再看网络上的各种面试题汇总或者博客,你会发现很多都是千篇一律的进程通信机制有哪些?进程同步与互斥机制鲜有人问津。看多了我都想把 CSDN 屏了.....,最后知道真相的我只想说为啥不能一篇博客把东西写清楚,没头没尾真的浪费时间。
Linux里的信号量是一种睡眠锁,调用者试图获得一个已被占用的信号量时,信号量会将其推入一个等待队列,让其睡眠。当该信号量被释放后,等待队列中的任务会被唤醒,获得该信号量。
有些信号名对应着3个信号值,这是因为这些信号值与平台相关,SIGKILL和SIGSTOP这两个信号既不能被应用程序捕获,也不能被操作系统阻塞或忽略。
并发相关的缺陷是最容易制造的,也是最难找到的,为了响应现代硬件和应用程序的需求,Linux 内核已经发展到同时处理更多事情的时代。这种变革使得内核性能及伸缩性得到了相当大的提高,然而也极大提高了内核编程的复杂性。
进程与线程之间是有区别的,不过linux内核只提供了轻量进程的支持,未实现线程模型。Linux是一种“多进程单线程”的操作系统。Linux本身只有进程的概念,而其所谓的“线程”本质上在内核里仍然是进程。
由于Android系统是基于Linux系统的,所以有必要简单的介绍下Linux的跨进程通信,对大家后续了解Android的跨进程通信是有帮助的,本篇的主要内容如下:
进程间通信(IPC,InterProcess Communication)是指在不同进程之间传播或交换信息。
结果面试过程只花了 5 分钟就结束了,面完的时候,天还是依然是亮的,还得在烈日下奔波 1 小时回去。
无名管道是一种半双工的通信方式,数据只能单向流动,而且只能在具有亲缘关系的进程间使用.进程的亲缘关系一般指的是父子关系。无明管道一般用于两个不同进程之间的通信。当一个进程创建了一个管道,并调用fork创建自己的一个子进程后,父进程关闭读管道端,子进程关闭写管道端,这样提供了两个进程之间数据流动的一种方式。
摘要总结:本文介绍了一种基于Linux的进程间通信(IPC)机制,即System V IPC(Inter-Process Communication,进程间通信)中的消息队列(Message Queue,MQ)子系统。该子系统提供了在多个进程之间传递消息的功能,并通过Linux内核中的消息队列实现进程间的同步和通信。本文还介绍了如何使用消息队列实现进程间的同步和通信,以及可能出现的死锁问题。
两个进程的PCB创建虚拟地址空间然后映射到物理内存中,每个进程因为是独立的,所以在物理内存中的地址也不同。 那么共享内存是怎么做到的呢? 首先先在物理内存中申请一块内存。 然后讲这块内存通过页表映射分别映射到这两个进程的虚拟地址空间内,让这两个进程都能看到这块内存。(这里也称为进程和共享内存挂接) 最后如果不想通信了:
总结 Postgresql使用匿名信号量完成进程间的一些同步操作。 匿名信号量由父进程创建在mmap的共享内存内,通过血缘关系继承给子进程,子进程从共享内存中获取信号量数据结构直接使用即可。 Postgresql的信号量分配比较简单,每一个进程拥有一个自己的信号量。初始化后值为1,表示未锁定状态。 加锁后信号量=0。 解锁后信号量=1。 Postgresql的信号量初始化使用的是POSIX接口(SYSTEM V)中的匿名信号量(命名信号量)。 struct PGPROC { ... PGSem
调用 mmap 系统调用 , 先检查 " 偏移 " 是否是 " 内存页大小 " 的 " 整数倍 " , 如果偏移是内存页大小的整数倍 , 则调用 sys_mmap_pgoff 函数 , 继续向下执行 ;
对于信号量我们并不陌生。信号量在计算机科学中是一个很容易理解的概念。本质上,信号量就是一个简单的整数,对其进行的操作称为PV操作。进入某段临界代码段就会调用相关信号量的P操作;如果信号量的值大于0,该值会减1,进程继续执行。相反,如果信号量的值等于0,该进程就会等待,直到有其它程序释放该信号量。释放信号量的过程就称为V操作,通过增加信号量的值,唤醒正在等待的进程。
工作中的难点问题正是我们知识技术栈全谱查漏补缺的最佳机遇,有问题不可怕,all in、死磕就完事了,哈哈哈~
前一段时间由于开题的事情一直耽搁了我搞Linux的进度,搞的我之前学的东西都遗忘了,非常烦躁的说,如今抽个时间把之前所学的做个小节。文章内容主要总结于《Linux程序设计第3版》。
进程间通信(IPC,Inter-Process Communication),指至少两个进程或线程间传送数据或信号的一些技术或方法。
Linux:进程间通信(二.共享内存详细讲解以及小项目使用和相关指令、消息队列、信号量)
通过之前的学习,我们大致可以感受出来,共享内存,消息队列和信号量在使用的时候是有很多共性的。它们三个的接口,包括接口中传的参数有的都有很大的相似度。其实,共享内存,消息队列和信号量是操作系统针对本地进程间通信特意设计出来的system V版本的进程间通信(IPC,Inter Process Communication)技术。共享内存,消息队列和信号量所管理的资源称为IPC资源。在操作系统底层,共享内存,消息队列和信号量都是有相对应的结构体将它们维护起来的。
文章主要介绍了在Linux系统中,如何利用自旋锁来实现线程之间的同步和互斥。主要包括了自旋锁的定义、工作原理、使用方式和注意事项,并通过实例介绍了如何在C语言中实现自旋锁。
管道是一种特殊的文件,它不属于某一种文件系统,而是一种独立的文件系统,是只存在于内存中的文件,本质是内核的一块缓冲。写入的内容每次都添加在管道缓冲区的末尾,并且每次都是从缓冲区的头部读出数据。管道是单向的、先进先出的、无结构的、固定大小字节流,它把一个进程的标准输出和另一个进程的标准输入连接在一起。
lab7 会依赖 lab1~lab6 ,我们需要把做的 lab1~lab6 的代码填到 lab7 中缺失的位置上面。练习 0 就是一个工具的利用。这里我使用的是 Linux 下的系统已预装好的 Meld Diff Viewer 工具。和 lab6 操作流程一样,我们只需要将已经完成的 lab1~lab6 与待完成的 lab7 (由于 lab7 是基于 lab1~lab6 基础上完成的,所以这里只需要导入 lab6 )分别导入进来,然后点击 compare 就行了。
相同: 都在 缓存内核 中 读写 , 先进先出 ,不支持 lseek 之类文件定位操作
我们之前的文章都是基于“裸机”系统,这种情况适合比较简单的示例,但如果我们要使用更先进的处理系统并最大限度地发挥 Zynq SoC 的双核 ARM Cortex-A9 MPCore 处理器的优势,我们需要一个操作系统。有很多系统可供选择:
操作系统中的经典定义: 进程:资源分配单位。 线程:调度单位。 操作系统中用PCB(Process Control Block, 进程控制块)来描述进程。Linux中的PCB是task_struct结构体。
多线程编程已经成为了现代软件开发的重要组成部分。对于Linux操作系统而言,多线程的支持和实现更是被广泛应用。本文将通过详细解析Linux操作系统中的多线程概念、线程的创建与管理、同步与互斥、线程间通信等方面,并结合示例代码,来深入探讨Linux的多线程编程。
PostgreSQL某些时候会耗尽操作系统的各种资源限制,当同一个系统上运行着多个拷贝的服务器或在一个非常大的安装中时尤其如此。本节解释了PostgreSQL使用的内核资源以及你可以采取的用于解决内核资源消耗相关问题的步骤。
6) bool __blk_end_request_cur(struct request *rq, int error)
领取专属 10元无门槛券
手把手带您无忧上云