Java里面的IO模型种类较多,主要包括BIO,NIO和AIO,每个IO模型都有不一样的地方,那么这些IO模型是如何演变呢,底层的原理又是怎样的呢? 本文我们就来聊聊。
上一篇文章 主要分析了 Linux 原生 AIO 的原理和使用,而这篇要介绍的是 Linux 原生 AIO 的实现过程。
io_submit、io_setup和io_getevents是LINUX上的AIO系统调用。这有一个非常特别注意的地方——传递给io_setup的aio_context参数必须初始化为0,在它的man手册里其实有说明,但容易被忽视,我就犯了这个错误,man说明如下:
nginx 使用的 epoll 是非阻塞的,但不是异步IO。 glibc 的 aio 有 bug , kernel 的 aio 只能以 O_DIRECT 方式做直接 IO , libeio 也是 beta 阶段。epoll 是成熟的,但是 epoll 本身是同步的。Linux 上目前没有像 IOCP 这样的成熟异步 IO 实现。
从上图可知,同步 IO 必须等待内核把 IO 操作处理完成后才返回。而异步 IO 不必等待 IO 操作完成,而是向内核发起一个 IO 操作就立刻返回,当内核完成 IO 操作后,会通过信号的方式通知应用程序。
上篇文章,我们介绍了Java IO框架的演变,其实编程语言的IO实现是依赖于底层的操作系统,如果OS内核不支持,那么语言层面也无能为力。任何一个跨平台的编程语言,一定是能够在不同操作系统之间选择使用最优的IO模型,那么不同平台的io策略都有哪些实现呢?本篇文章我们就来了解一下。
同步IO、异步IO、阻塞IO、非阻塞IO,这几个词常见于各种各样的与网络相关的文章之中,往往不同上下文中它们的意思是不一样的,以致于我在很长一段时间对此感到困惑,所以想写一篇文章整理一下。
看了一些文章,发现有很多不同的理解,可能是因为大家入切的角度、环境不一样。所以,我们先说明基本的IO操作及环境。
linux操作系统包含了五种IO模型,各种上层编程语言或者网络编程框架的上层实现都是基于操作系统的这些IO实现来实现的。
本文试图理清楚几种IO模型的根本性区别,同时分析了为什么在Linux网络编程中最好要用非阻塞式IO?
服务器端编程,经常需要构造高性能的网络应用,需要选用高性能的IO模型,这也是通关大公司面试必备的知识。
从基础讲起,IO的原理和模型是隐藏在编程知识底下的,是开发人员必须掌握的基础原理,是基础的基础,更是通关大厂面试的必备知识。
Linux内核将所有的外部设备当做一个文件来操作,对文件的读写操作会调用内核的系统命令,返回一个文件描述符(file descriptor,fd)。而对socket的读写也有相应的描述符,称为socketfd。描述符就是一个数字,指向内存中的一个结构体(文件路径或者数据区等)
2015年,在腾讯暑期实习期间,leader给我布置的一个任务是整理分析网络模型。虽然也有正常工作要做,但这个任务贯穿了整个实习期。后来实习结束的总结PPT上,这部分内容占到了一半篇幅,我从C10K问题引入,讲了很多:从fork-exec的多进程到进程池;从多线程再到IO多路复用;从accept的惊群到pthread_cond_wait的惊群。
很多对技术有追求的读者朋友,做到一定阶段后都希望技术有所精进。有些读者朋友可能会研究一些中间件的技术架构和实现原理。比如,Nginx为什么能同时支撑数万乃至数十万的连接?为什么单工作线程的Redis性能比多线程的Memcached还要强?Dubbo的底层实现是怎样的,为什么他的通信效率非常高?
清·俞樾《湖楼笔谈》六:“盖诗人用意之妙,在乎深入显出。入之不深,则有浅易之病;出之不显,则有艰涩之患。”
在这篇博客中,我们将探讨Linux底层的几种IO(输入/输出)方式,为鸿蒙开发者提供一个清晰的理解。本文将详细介绍阻塞IO、非阻塞IO、I/O多路复用、信号驱动IO及异步IO等概念,旨在帮助开发者优化鸿蒙应用性能。关键词:鸿蒙OS、Linux、IO模型、阻塞非阻塞、IO多路复用、性能优化。
注意区别非阻塞,阻塞和异步。阻塞和非阻塞会等待调用结果的,异步根本就不会等待调用结果,所以异步根本就没有阻塞和非阻塞的概念。
程序员:假如我们执行A,B两个IO操作的时候,如果必须等待A完成后才能执行B那么这个就是
首先要实现多任务,我们需要设计Master-Worker模式,Master负责分配任务,Worker负责执行任务。因此,多任务环境下,通常是一个Master,多个Wroker。
我们都知道unix世界里、一切皆文件、而文件是什么呢?文件就是一串二进制流而已、不管socket、还是FIFO、管道、终端、对我们来说、一切都是文件、一切都是流、在信息交换的过程中、我们都是对这些流进行数据的收发操作、简称为I/O操作(input and output)、往流中读出数据、系统调用read、写入数据、系统调用write、不过话说回来了、计算机里有这么多的流、我怎么知道要操作哪个流呢?做到这个的就是文件描述符、即通常所说的fd(file descriptor)、一个fd就是一个整数、所以对这个整数的操作、就是对这个文件(流)的操作、我们创建一个socket、通过系统调用会返回一个文件描述符、那么剩下对socket的操作就会转化为对这个描述符的操作、不能不说这又是一种分层和抽象的思想、
User space(用户空间)和 Kernel space(内核空间)。Linux里面这么设计的目的主要是为了安全,即使用户空间崩溃了,内核也不受影响。所以在Linux世界,进程不能直接访问硬件设备,当进程需要访问硬件设备(比如读取磁盘文件,接收网络数据等等)时,必须由用户态模式切换至内核态模式,通过系统调用访问硬件设备。
上一篇文章讲解了I/O模型的一些基本概念,包括同步与异步,阻塞与非阻塞,同步IO与异步IO,阻塞IO与非阻塞IO。这次一起来了解一下现有的几种IO模型,以及高效IO的两种设计模式,也都是属于IO模型的基础知识。
Libuv是一个高性能的,事件驱动的异步I/O库,它本身是由C语言编写的,具有很高的可移植性。libuv封装了不同平台底层对于异步IO模型的实现,所以它还本身具备着Windows, Linux都可使用的跨平台能力。
IO的阻塞与同步 IO即输入/输出(Input/Output)。每个应用系统都少不了交互,或多或少都会产生数据,而它们的核心:IO,其性能的发展明显落后于 CPU 。对于高性能、高并发的应用系统来说,回避IO瓶颈进而提升性能是至关重要的。 阻塞与非阻塞 一般来说,IO模型可以分为阻塞/非阻塞及同步/异步。先从简单的阻塞/非阻塞模型说起。 阻塞IO:用户进程发起IO操作后,必须等待IO操作完成才能继续运行。通信协议中的 Socket 编程,为了简单起见,也使用的这种方式。但这种方式会造成CPU大量闲置,系
很多的小伙伴,被java IO 模型,搞得有点儿晕,一会儿是4种模型,一会儿又变成了5种模型。
POSIX AIO 是在用户控件模拟异步 IO 的功能,不需要内核支持,而 linux AIO 则是 linux 内核原声支持的异步 IO 调用,行为更加低级。
市面上的“设计模式“书籍文章,皆针对Java/C++/C#等面向对象语言,似乎离开了面向对象的种种特性,设计模式就无法实现,没有用武之地了。
http://blog.csdn.net/zs634134578/article/details/19806429
《操作系统与存储:解析Linux内核全新异步IO引擎——io_uring设计与实现》(一)
fd:file descriptor,文件描述符。linux内核将所有外部设备都看作一个文件来操作,对文件的读写会调用内核提供的命令,返回一个文件描述符。对一个socket的读写也会有相应的socket fd。描述符就是一个指向内核中结构体的数字。
首先,我们要了解IO模型先要知道在底层操作系统是通过哪些设备来实现数据的传输,其次要了解IO模型中哪些是发生阻塞调用操作,然后有了上述的基本认知之后,开始来了解IO模型是如何演进,最后通过IO模型的演进我们要辨别IO模型中的关键术语联系与区分,上述的思维导图囊括以下要分享的知识点!
其中hostip是必须修改的,其他配置可以酌情修改. 注意: 如果你的Docker环境是通过Docker Toolbox,且是安装在windows环境,建议将isToolBox=1. 因为windows下数据目录共享可能会出现磁盘异步io的异常,此时通过设置--skip-innodb-use-native-aio关闭异步io之后就会正常.关闭异步io会导致性能下降,此参数仅建议用于测试。磁盘异步IO介绍请参考:https://dev.mysql.com/doc/refman/5.7/en/innodb-linux-native-aio.html
Linux系统提供给用户用于接收网络IO的系统接口。从套接字上接收一个消息,可同时应用于面向连接和无连接的套接字。
此时,用户应用程序也同样需要占用这些资源,如果不加以限制,那么会和操作系统争抢资源,导致冲突。
刚开始了解Node感觉很吊,各种说高性能,可是一直不理解为什么单线程会比多线程快?为什么异步IO比非阻塞IO快?因此,本篇在阅读相关书籍后,根据自己的理解,整理此文,如有错误,仅代表理论不精,必当修改,以免误导他人。还请多多指正..... 关于阻塞IO和非阻塞IO 系统内核只有两种IO模式—— 阻塞IO和非阻塞IO。这里的IO可不仅仅是读取文件内容,而是更为广泛的概念。比如Socket啊,网络Socket,磁盘读取等等,这些相比于CPU计算都是很耗时的。 下图为阻塞IO的工作模式: 阻塞IO在需要获
编程中,我们经常会遇到“并发”这个概念,目的是让软件能充分利用硬件资源,提高性能。并发的方式有多种,多线程,多进程,异步IO等。多线程和多进程更多应用于CPU密集型的场景,比如科学计算的时间都耗费在CPU上,利用多核CPU来分担计算任务。多线程和多进程之间的场景切换和通讯代价很高,不适合IO密集型的场景(关于多线程和多进程的特点已经超出本文讨论的范畴,有兴趣的同学可以自行搜索深入理解)。而异步IO就是非常适合IO密集型的场景,比如网络爬虫和Web服务。
几年前的一个下午,公司里码农们正在安静地敲着代码,突然很多人的手机同时“哔哔”地响了起来。本来以为发工资了,都挺高兴!打开一看,原来是告警短信
在Linux系统编程中,IO流(Input/Output Streams)是一个非常重要的概念。高级IO流是基于基本IO操作(如read、write等)之上的扩展,提供了更强大的功能和更高效的操作方式。本文将深入探讨Linux中的高级IO流,重点介绍其原理和使用方法,并提供相应的C++代码示例。
写这个小结主要是因为之前研究Boost.Asio的时候,其内部使用了很多不同的方法来实现异步网络编程 然后就顺便把一些高级的玩意看了一下,也顺便把以前低级的玩意放到一起,哇哈哈。很多东西只是个人的理解,不一定正确
(2)同步非阻塞IO(Non-blocking IO):默认创建的socket都是阻塞的,非阻塞IO要求socket被设置为NONBLOCK。注意这里所说的NIO并非Java的NIO(New IO)库。
协程是一种轻量级的线程,它允许函数在执行过程中暂停并恢复。与常规函数不同,协程具有多个入口点,可以在函数内部的任何位置暂停和继续执行。Python的协程通过async和await关键字来定义和管理。
明显能感觉得到小黑哥最近好像比较累,之前眼里bulingbuling闪的光是看不到了。
参考: Netty权威指南第一版 Java 网络IO编程总结(BIO、NIO、AIO均含完整实例代码)
IO在计算机中指Input/Output,也就是输入和输出。由于程序和运行时数据是在内存中驻留,由CPU这个超快的计算核心来执行,涉及到数据交换的地方,通常是磁盘、网络等,就需要IO接口。
服务器端编程经常需要构造高性能的IO模型,常见的IO模型有四种: (1)同步阻塞IO(Blocking IO):即传统的IO模型。 (2)同步非阻塞IO(Non-blocking IO):默认创建的socket都是阻塞的,非阻塞IO要求socket被设置为NONBLOCK。注意这里所说的NIO并非Java的NIO(New IO)库。 (3)IO多路复用(IO Multiplexing):即经典的Reactor设计模式,有时也称为异步阻塞IO,Java中的Selector和Linux中的epoll都是这种模型
接触网络编程,我们时常会与各种与IO相关的概念打交道:同步(Synchronous)、异步(ASynchronous)、阻塞(blocking)和非阻塞(non-blocking)。关于概念的区别在知乎上看到一位朋友(链接)打了一个比较形象的比喻:
I/O输入/输出(Input/Output),在POSIX兼容的系统上,例如Linux系统,I/O操作可以有多种方式,比如DIO(Direct I/O),AIO(Asynchronous,I/O 异步I/O),Memory-Mapped I/O(内存映设I/O)等,不同的I/O方式有不同的实现方式和性能,在不同的应用中可以按情况选择不同的I/O方式。
领取专属 10元无门槛券
手把手带您无忧上云