由于CASCI/CASSCF计算量随活性空间呈指数增长,超过(16,16)的计算在高配机器上几乎不可能。近似求解大活性空间的方法通常有DMRG, selected CI等等。Block-1.5是做DMRG计算的经典程序,由Sandeep Sharma和Garnet Chan开发,虽然早在5年前就不更新了,但其计算速度仍高于很多同类程序。Block-1.5一般结合PySCF使用,可以进行DMRG-CASCI,DMRG-CASSCF和DMRG-SC-NEVPT2等计算。笔者之前在公众号上将该程序的安装拆分为几篇短文
在之前的博客中我们介绍过concurrent等python多进程任务的方案,而之所以我们又在考虑MPI等方案来实现python并行计算的原因,其实是将python的计算任务与并行计算的任务调度分层实现。在concurrent和multiprocessing等方案中,我们的python计算任务和调度任务是一体化的,而且还有一个比较大的限制是没办法跨节点操作的,这对于任务与环境的定制化程度要求是比较高的。而MPI的方案在设计初期就考虑到了多节点之间通信的问题,而这种分层式的任务调度解决方案其实在架构上看也更加的合理。做计算的人只要考虑单个进程下的任务如何执行就可以了,至于任务如何并行如何调度,那就是上层的MPI该做的事情了。
IB(InfiniBand)和 RDMA(Remote Direct Memory Access)是一种高性能网络技术,通常用于加速数据传输。它们不是基于传统的 TCP/IP 协议栈,而是使用自己的协议栈,以实现低延迟、高带宽的数据传输。
如果报错说“Aborting because C++ compiler does not work.”,就安装下编译器:
在现代科学和工程中,数值计算工程师会遇到大量复杂的数学计算问题。这些问题突出的共性表现在高维数、计算规模大、多时空尺度、强非线性等方面。批量处理Batch拥有一套完整的并行计算框架,适配常见的并行模型(MPI应用)。利用海量弹性的云资源,有力地支撑高性能科学计算应用软件和算法。
通过官方网站提供的下载地址:https://download.open-mpi.org/release/open-mpi/v3.1/openmpi-3.1.0.tar.gz,下载3.1版的openmpi,在命令行执行如下命令,会将openmpi-3.1.0.tar.gz文件下载到当前目录:
http://sourceforge.net/projects/boost/files/boost/1.44.0/
Intel oneAPI 是一种统一的跨架构的的编程模型,提供了CPU、GPU、FPGA、专用加速器的产品。
0x00 前言 本篇是MPI的入门教程,主要是为了简单地了解MPI的设计和基本用法,方便和现在的Hadoop、Spark做对比,并尝试理解它们之间在设计上有什么区别。 身处Hadoop、Spark这些优秀的分布式开发框架蓬勃发展的今天,老的分布式编程模型是否没有必要学习?这个很难回答,但是我更倾向于花一个下午的时候来学习和了解它。 关于并发和并行编程系列的文章请参考文章集合 文章结构 举个最简单的例子,通过这个例子让大家对MPI有一个基本的理解。 解释一些和MPI相关的概念。 列举一些MPI的常用函数
近期由于一些原因接触到了并行计算,对于这个陌生的领域我最先接触到的是MPI框架。MPI(Message Passing Interface),可以理解为是一种独立于语言的信息传递标准。目前它有两种具体的实现OpenMPI和MPICH,也就是说如果我们要使用MPI标准进行并行计算,就需要安装OpenMPI或MPICH库。本文以MPICH为例,在ubantu中安装MPI的环境,并对vscode进行配置。
CP2K安装的方法有很多(我们曾分享过CP2K 5.1版本的安装及简单介绍),笔者最近尝试在课题组新买的服务器上从源码编译安装CP2K,过程中遇到了各种问题。根据这次安装的经验,在此笔者想和大家分享如何从零开始安装CP2K(支持PLUMED)。
Ubuntu - openmpi 源码安装 sudo apt-get install openmpi # 安装版本比较低 1. Ubuntu 程序源码安装 主要包括三个步骤: 1 - ./configure 2 - make 3 - make install 这些都是典型的使用GNU的AUTOCONF和AUTOMAKE产生的程序的安装步骤。 ./configure是用来检测你的安装平台的目标特征的。比如它会检测你是不是有CC或GCC,并不是需要CC或GCC,它是个shell脚本。 m
torch.distributed 支持三个后端,每个后端具有不同的功能。下表显示哪些功能可用于CPU/CUDA张量。仅当用于构建PyTorch的实现支持时,MPI才支持CUDA。
还记得今年4月伯克利BAIR实验室发布的那个会“18般武艺”的DeepMimic模型吗?他们使用强化学习技术,用动作捕捉片段训练模型,教会了AI智能体完成24种动作,走路、跑步就不用说了,还包括翻跟斗、侧翻跳、投球、高踢腿等等高能动作。
ABAQUS是一款广泛应用于工程领域的有限元分析软件,具有以下主要功能:结构分析:ABAQUS可以进行静态和动态分析,包括线性和非线性分析,可以求解各种结构的应力、应变、位移、稳定性等问题。热力学分析:ABAQUS可以进行热传递、热膨胀、热应力等问题的热力学分析。动力学分析:ABAQUS可以进行振动分析、冲击响应、疲劳分析等动力学问题的求解。流体-结构耦合分析:ABAQUS可以进行流体-结构耦合分析,包括流固耦合、热流固耦合等问题。复合材料分析:ABAQUS可以对复合材料的层合板、复合材料结构的力学性能进行
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib 改为:
之前的文章中介绍了天河二号的架构,我们大致了解到了天河二号是一个由很多计算节点组成的具有强大运算能力的超级计算机。
CFOUR程序的全称为Coupled-Cluster techniques for Computational Chemistry,是一款专注于高精度量子化学计算的程序。从名字可以看出,其专长为耦合簇方法,支持在CC级别下做单点、几何结构优化(如CCSD(T)级别)、激发态计算(如EOM-CCSDT)、性质计算(如CCSD(T)级别的NMR计算)。其官方网站为
本文以 PyTorch 官方文档 https://pytorch.org/tutorials/intermediate/dist_tuto.html 为基础,对如何编写分布式进行了介绍,并且加上了自己的理解。
电脑第一次插入MPI转USB电缆时电脑会自动安装MPI电缆的驱动(部分电脑MPI系统可能会安装失败,请更换USB接口后尝试,尝试多次后如果安装驱动仍然失败,说明你所使用的电脑系统存在问题,请重新安装电脑系统后尝试,部分同学会在MPI转USB电缆驱动安装失败后到网络上下载MPI线的驱动程序手动进行安装,这样是没有用的,因为现在使用的MPI数据线驱动都是自动安装的,手动安装的驱动程序是无法识别的)
AI 研习社消息,日前, Facebook 人工智能研究院发布 wav2letter 工具包,它是一个简单高效的端到端自动语音识别(ASR)系统,实现了 Wav2Letter: an End-to-End ConvNet-based Speech Recognition System 和 Letter-Based Speech Recognition with Gated ConvNets 这两篇论文中提出的架构。如果大家想现在就开始使用这个工具进行语音识别,Facebook 提供 Librispeech
MPI是一个跨语言的通讯协议,用于并发编程。MPI标准定义了一组具有可移植性的编程接口。
https://blog.csdn.net/liu_feng_zi_/article/details/94286438
有任务需要处理一堆收集来得开源数据集,在服务器单机跑了一天才给结果,多方咨询有HPC可以用,或者叫supercomputer,或者叫计算机集群,大部分的简称grid。看了wiki、confluence,给出一堆链接在脑海中织出密密麻麻的蜘蛛网——无从下手。居然没有use case出发端到端的参考demo,真是无力吐槽。自力更生求助google,youtube,stack overflow,梳理下来,简而言之,可以理解分而治之多线程的多处理核(cpu/gpu)的版本,涉及算力资源调度引入slurm,涉及通讯引入mpi。
虽然笔者写过 ARM 比 Intel CPU 要有低功耗、高性能等优势,但是目前来说 Intel 芯片仍然是主流,毕竟大部分实验室所使用的服务器、工作站以及个人普通 PC 基本上都是 Intel 芯片。在 Intel 平台我们可能对于软件和依赖库的支持不需要太担心,正常来说不管 Linux 或者 Unix 系统都会有。这里笔者采用 Ubuntu Server 20.04 来举例介绍 Intel 平台下 CONQUEST 的编译安装。
Dalton是一款开源免费的量子化学程序,主要特色是支持一大堆性质的计算,例如DFT下的二次响应计算(常规TDDFT计算仅是线性相应),MCSCF波函数下的核磁NMR计算等等,以及各类激发态方法。当然,也有一些高精度单参考方法(如MP2-R12和CCSD-R12等),但较少用到。其PDF手册在
业界AI应用中,GPU的使用逐渐增加,腾讯云TACO是一种异构计算加速软件服务,搭配腾讯自研的软硬件协同优化组件和硬件厂商特有优化方案,支持物理机、云服务器、容器等产品的计算加速、图形渲染、视频转码各个应用场景,帮助用户实现全方位全场景的降本增效。
1. 在安装依赖库的时候,遇到: @gxjun-Latitude-E5440:~$ sudo apt-get install libatlas-base-dev 正在读取软件包列表... 完成 正在分析软件包的依赖关系树 正在读取状态信息... 完成 libatlas-base-dev 已经是最新的版本了。 升级了 0 个软件包,新安装了 0 个软件包,要卸载 0 个软件包,有 419 个软件包未被升级。 有 4 个软件包没有被完全安装或卸载。 解压缩后会消耗掉 0 B 的额外
具体来讲,本文首先介绍了分布式计算的基本概念,以及分布式计算如何用于深度学习。然后,列举了配置处理分布式应用的环境的标准需求(硬件和软件)。最后,为了提供亲身实践的经验,本文从理论角度和实现的角度演示了一个用于训练深度学习模型的分布式算法(同步随机梯度下降,synchronous SGD)。
选自GitHub 作者:Ronan Collobert等 机器之心编译 参与:李亚洲、刘晓坤 近日,Facebook AI 研究院开源了端到端语音识别系统 wav2letter,本文是该架构的论文实现,读者可据此做语音转录。 GitHub 地址:https://github.com/facebookresearch/wav2letter wav2letter wav2letter 是 Facebook AI 研究院今天开源的简单高效的端到端自动语音识别(ASR)系统。该实现的原作者包括 Ronan Col
使用mpicc ,[[INVALID],INVALID] ORTE_ERROR_LOG: A system-required executable either could not be found or was not executable by this user in file ess_singleton_module.c at line 231
尽管 CMake 是跨平台的,在我们的项目中我们努力使源代码能够在不同平台、操作系统和编译器之间移植,但有时源代码并不完全可移植;例如,当使用依赖于供应商的扩展时,我们可能会发现有必要根据平台以略有不同的方式配置和/或构建代码。这对于遗留代码或交叉编译尤其相关,我们将在第十三章,替代生成器和交叉编译中回到这个话题。了解处理器指令集以针对特定目标平台优化性能也是有利的。本章提供了检测此类环境的食谱,并提供了如何实施此类解决方案的建议。
这种安装运行方法比前面(点击打开链接)的方法简单,这种方法用官方预装好的repast HPC2.0,可以省去自己安装MPI于boost的工作。
背景 随着 AI 模型规模的越来越大,训练数据的越来越多,用户对模型的迭代效率也要求越来越高,单个 GPU 的算力显然无法满足大部分业务场景,使用单机多卡或多机多卡训练成为趋势。单机多卡训练场景的参数同步借助目前 NVIDIA NVLINK 技术已经得到了很好地解决,而多机多卡场景由于对网络通信的强依赖就没有那么简单。 目前网卡厂商提供的 RoCE 等 RDMA 技术,使得多机通信效率大幅提升,但是如何在25G或 50G VPC 网络环境下提升分布式训练系统的通信效率,仍然是目前公有云厂商亟需解决的
冯克环,腾讯云异构计算研发工程师,专注于云上 AI 训练加速相关技术,对 GPU 虚拟化、GPU 训练加速有深厚的积累,目前负责腾讯云 AI 训练加速相关技术的研发以及性能优化工作。 张锐,腾讯云网络虚拟化研发工程师,在之前的工作中专注于 AI 训练网络优化方面的工作,在 RDMA、GPU 通信优化等方面有较多经验,目前专注于做云上AI训练通信优化方面的工作。 背景 随着 AI 模型规模的越来越大,训练数据的越来越多,用户对模型的迭代效率也要求越来越高,单个 GPU 的算力显然无法满足大部分业务场景,使
7. VS2013-Qt5.5.1-VTK7.0.0-Boost1.6.1-Qhull2015.2-FLANN1.8.4-Eigen3.2.8-OpenNI2.2.0.33-动态编译-PCL1.8.0
从CDSW1.1.0开始支持GPU,具体可以参考Fayson之前的文章《如何在CDSW中使用GPU运行深度学习》,从最新的CDSW支持GPU的网站上我们可以查到相应的Nvidia Drive版本,CUDA版本以及TensorFlow版本,如下:
在运行 mpi-operator 之后,想进去容器查看一下,于是执行下面的命令报错。
摘要总结:本文主要介绍了如何在Linux系统下通过配置user-config.jam文件来指定编译器,以便在编译Boost库时指定使用某个版本的编译器,从而避免因为系统中多个版本的编译器导致的问题。
TSN是”temporal-segment-networks”的简称,是视频动作识别任务里面当前最好的方法。虽然这个结构是在ECCV2016的论文里面提出来的,代码也放出来挺长时间了,但是这个项目里面集合了Caffe, OpenCV,CUDA,CUDNN等几大神坑项目,不同版本之间的依赖、选择等问题很麻烦,因此我之前编译了好几次都没有能够编译成功。这次花了近一天的时间来重新编译了一下整个项目,虽然还是有些问题,例如MPI编译没有通过,CUDA8貌似不支持,CuDNN v5好像也不支持,但最后总算是编译通过,可以运行了。所以记录一下整个的过程,期望对自己和别人能够有所帮助。
一位来自金融行业的客户,他们希望可以实时地模拟和响应风险,以实现企业金融风险管理能力的提升。事实上,不管是金融行业还是其他行业,要想加快步伐满足快速数字化世界中的客户需求,就必须能够比标准计算机更快地处理大量数据。高性能计算(HPC)解决方案,正在受到企业们的青睐。
HCA方案将所有的信道分为两部分:一部分信道固定配置给某些小区,即部分信道隔离;另一部分信道则保留在中心存储区中,为系统中的所有用户所共享,即部分信道共享。HCA是FCA和DCA的折中,故成为混合分配。(关于FCA和DCA参见相应词条)
C:\boost_1_60_0\tools\build\src\tools\mpi.jam,利用文本文件打开mpi.jam文件。做如下修改:
进行深度学习的训练向来不被认为是CPU的强项,但是以CPU研发见长的英特尔并不甘心屈服于这个定位,在过去的几年里,英特尔及其合作伙伴一直在探索用CPU来进行快速有效的深度学习开发的方法。代号KNL的Xeon Phi至强芯片是英特尔的努力尝试之一,同时在深度学习算法的改进上,英特尔也做了一些努力。 近日,在美国旧金山举行的IDF16大会上,与英特尔联合宣布启动了KNL试用体验计划的浪潮集团副总裁、技术总监胡雷钧做了基于英特尔至强融合处理器KNL和FPGA上的深度学习的试用体验报告。报告介绍了高性能计算和深度学
Amber是一套分子动力学模拟程序,我们今天来说下如何使用云服务器安装部署这套程序。
專 欄 ❈PytLab,Python 中文社区专栏作者。主要从事科学计算与高性能计算领域的应用,主要语言为Python,C,C++。熟悉数值算法(最优化方法,蒙特卡洛算法等)与并行化 算法(MPI,OpenMP等多线程以及多进程并行化)以及python优化方法,经常使用C++给python写扩展。 blog:http://ipytlab.com github:https://github.com/PytLab ❈ 前言 本文中作者使用MPI的Python接口mpi4py来将自己的遗传算法框架GAFT进行多
https://www.cnblogs.com/zhbzz2007/p/5827059.html
ChatGPT 的横空出世开启了大语言模型 (LLM) 的普及元年,BERT、GPT-4、ChatGLM 等模型的非凡能力则展现出类似通用人工智能 (AI) 的巨大潜力,也因此得到了多行业、多领域的广泛关注。
领取专属 10元无门槛券
手把手带您无忧上云